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Abstract

Modern forecasting algorithms use the Wisdom of Crowds to produce forecasts
better than those of the best identifiable expert. However, these algorithms may be
inaccurate when crowds are systematically biased or when expertise varies substantially
across forecasters. Recent work has shown that meta-predictions—a forecast of the
average forecast of others—can be used to correct for biases even when no external
information such as forecasters’ past performance is available. We explore whether
meta-predictions can also be used to improve forecasts by identifying and leveraging
the expertise of forecasters. We develop a confidence-based version of the Surprisingly
Popular algorithm proposed by Prelec, Seung, and McCoy. Like the original algorithm,
our new algorithm is robust to bias. However, unlike the original algorithm, our version
is predicted to always weight forecasters with more informative private signals more
than forecasters with less informative ones. In a series of experiments, we find that the
modified algorithm does a better job in weighting informed forecasters than the original
algorithm and show that individuals who are correct more often on similar decision
problems contribute more to the final decision than other forecasters. Empirically,
the modified algorithm outperforms the original algorithm for a set of 500 decision
problems.
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1 Introduction

The Wisdom of Crowds has revolutionized the way in which we make predictions. It is the

phenomenon where crowds make consistently better predictions, judgments, or estimates

than even the most-expert individuals (Galton 1907, Surowiecki 2005). The superiority of

aggregate predictions over individual predictions has been demonstrated across a variety of

domains, but has gained particular attention in economic, political, and market forecasting

where there are often high stakes involved (Budescu and Chen 2015, Dreber et al. 2015,

Mellers et al. 2015, Müller-Trede et al. 2017, Tetlock 2017, Gillen et al. 2018).

The simplest approach to aggregating predictions is to use majority voting. As shown

by the Condorcet Jury Theorem (Condorcet 1785), the probability that majority voting pro-

duces the correct decision for a binary decision increases towards 100% as the group sizes

increases, under the assumption that each individual is more likely to be correct than incor-

rect. Despite its appealing properties, majority voting may often be inaccurate when crowds

contain a large proportion of uninformed forecasters or when the population of forecasters

are systematically biased (Simmons et al. 2011, Budescu and Chen 2015).

To deal with the issue of uninformed forecasters, researchers have developed aggre-

gation techniques that use training data to identify and weight forecasters based on their

expertise. For example, Cooke (1991) developed a model that identifies and excludes non-

experts from the crowd based on their performance on seed questions with outcomes that are

known to the decision-maker. Similarly, Budescu and Chen (2015) showed that significant

improvements in accuracy over the unweighted mean could be obtained by weighting experts

by their performance relative to the crowd and excluding forecasters who did not improve

the aggregate prediction.

Although expert-selection methods often generate better predictions than majority

voting, researchers are not always able to identify individuals with the relevant expertise

in advance. For example, forecasters’ performance on prior problems with known outcomes

might not effectively predict performance on problems of actual interest, and collecting the

responses to a panel of relevant problems may be impractical (Genre et al. 2013, Clemen

1989). We refer to forecasting problems where it is either not possible or not helpful to use

the individual’s responses to prior problems as “single-question” forecasting problems, as

the task is then to make the best forecast possible based on data relating only to a single

question. We concentrate on the single-question problem for the rest of the paper.

The standard approach to the single-question prediction problem has been to use re-

ported confidence to weight forecasters or to simply select the answer with the highest confi-

dence (Koriat 2012, Prelec et al. 2017). These confidence-based approaches treat confidence
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as a predictor of expertise, weighting more-confident judgments more than less-confident

judgments in the aggregation process. However, forecasters who hold the majority opinion

tend to be overconfident while individuals who hold the minority opinion tend to be under-

confident (Hertwig 2012, Koriat 2008, 2012). Thus, confidence may be negatively correlated

with accuracy in “wicked” problems where most forecasters are incorrect. Indeed, there are

many examples in the literature in which incorrect forecasters are more confident in their

forecasts than correct forecasters (Koriat 2008, 2012, Fischhoff and MacGregor 1982, Lee

and Lee 2017).

In this paper we explore whether we can improve upon existing confidence-based ap-

proaches by combining forecasts with meta-predicitons about the forecasts of others. In a

remarkable paper, Prelec et al. (PSM, 2017) proposed a novel algorithm that uses meta-

predictions to correct for crowd biases. Their Surprisingly Popular (SP) algorithm generates

predictions by using forecasters’ votes about whether a particular event will be true or false

and forecasters’ meta-predictions—a prediction of the proportion of other forecasters that

will vote true. The SP algorithm predicts the outcome that is more popular than the crowd

expects (i.e., the surprisingly popular outcome) to be the correct answer. In other words,

the SP algorithm predicts true when the total number of true votes exceeds the average of

the meta-predictions, and false otherwise.

PSM showed that the SP algorithm has the important theoretical property that it

will always predict the correct answer when aggregating reports from a large homogeneous

population of Bayesian forecasters, even when a substantial fraction of these forecasters are

biased. In the first section of this paper, we show that an alternative Surprisingly Confident

(SC) algorithm, which generates predictions by using forecasters’ confidences and meta-

predictions about the confidences of others, also shares this property. We then explore the

theoretical properties of the SP and SC algorithms as they relate to expertise.

In our theoretical framework, we consider an environment in which individuals are

asked binary true or false problems and share a common prior about the likelihood that the

answer is true. Individuals receive signals from an information service and form a posterior

belief about whether the answer is true using Bayes rule. The posterior belief held by an

individual influences both their vote and their meta-prediction of the votes of others. We say

that an individual has a more informative private signal than another individual if (i) the

two individuals have posteriors that are both above the common prior or below the common

prior and (ii) the absolute distance between the first individual’s posterior and the common

prior is larger than the second. An algorithm leverages informed forecasters if individuals

with more informative signals contribute more to the algorithm’s final prediction than those

who are uninformed.
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Our first result is that the SP algorithm actually leverages uninformed forecasters in

problems where the crowd is initially unbiased. That is, the contribution that an individual

makes to the final prediction of the algorithm is decreasing in the quality of the individual’s

information, such that individual forecasters who receive the most information have lower

contributions to the aggregated forecast than individual forecasters who receive less infor-

mation. To prove this result, we provide a novel alternative formulation of the SP algorithm,

which expresses the algorithm in terms of a weighted average of the forecasters’ votes. In

this formulation, the weight assigned to an individual’s vote is proportional to the absolute

difference between a forecasters vote and their meta-prediction about the vote of others. We

show that in unbiased problems, the weights are largest for fully uninformed individuals and

strictly decrease as an individual becomes better informed.1

Our modified SC algorithm improves on the way the algorithm weights forecasters with

better-informed signals. Specifically, the SC algorithm always leverages forecasters with more

informative private signals regardless of whether the decision problem is biased or unbiased.

Thus, a forecaster who has a more informative signal will always make a larger contribution

to the final outcome of the algorithm than one who has a less informative signal. We show

that the differences in the weight functions between the SP and SC algorithm may lead the

SC algorithm to be more accurate than the SP algorithm when the sample of forecasters is

finite, particularly in cases where forecasters vary in expertise.

Although our first result suggests that the SP algorithm may over-weight uninformed

individuals and under-weight informed ones, it ignores a key advantage of crowd forecasts.

In problems with an unbiased prior, the votes of forecasters who receive no information will

be random while the votes of those who know the correct state will be perfectly correlated.

This will cause the votes of the uninformed forecasters to partially cancel out as crowd size

increases and may offset the weighting of individuals.

To understand the aggregate properties of the SP and SC algorithms, we consider a

more general environment in which individuals share the same prior belief but have access

to one of two information services that are ordered in terms of informativeness. We refer to

individuals who draw signals from the more informative information service as experts and

individuals who draw signals from the less informative service as novices. Although experts

and novices are assumed to have the same priors, experts are expected, on average, to receive

more informative private signals and therefore predict the correct answer more often than

1This result does not mean that the SP algorithm will always perform poorly in unbiased settings. We
show in our examples that the SP algorithm reveals important information that is common knowledge to all
forecasters regarding the structure of signals. In large samples, this information is enough to correctly predict
the right answer in both biased and unbiased problems when all forecasters know the true distribution of
potential signals.
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novices. An algorithm leverages this expertise if the expected contribution of an expert is

greater than that of a novice in both true and false questions.

As a second result, we show that the SC algorithm will leverage expertise in any

environment where private signals are independent after conditioning on the state.2 By

contrast, the SP algorithm requires additional assumptions to ensure that the algorithm

leverages expertise. In Appendix B, we derive a set of sufficient conditions on the structure

of the information services that guarantee that the SP algorithm leverages expertise. Our

conditions suggest that in unbiased problems, experts will be leveraged by the SP algorithm

in environments where (i) there is a mix of both experts and novices in the population and

(ii) novices are reasonably uninformed.

Finally, we consider the properties of the SC algorithm in more realistic settings where

reported confidences do not coincide with each forecaster’s posterior and where forecasts

are systematically miscalibrated. We show that even when forecasters are not Bayesian,

the SC algorithm will predict the true answer in large samples if (i) reported confidences

are weakly increasing in the underlying true posteriors and (ii) forecasters take systematic

overconfidence into account when reporting their meta-prediction. This result suggests that

the algorithm is likely to perform well in settings where forecasters who believe the consensus

position is correct are overconfident and forecasters who believe the consensus position is

incorrect are under-confident. In such environments, other confidence-based aggregation

approaches tend to fail.

Our theoretical results predicts particular patterns in the weights generated in the

SP algorithm that vary with initial crowd bias. To analyse whether these patterns exist

empirically, we estimate the relationship between weights and signals in two datasets: a

replication of the US States dataset of PSM in which the prior is predicted to be strongly

biased, and a new quiz dataset where we can vary the distribution of experts and novices by

varying task difficulty. Using the probabilistic forecasts of an individual as a proxy for their

posterior belief, we show that the weights in the datasets from both our experiments follow

the patterns predicted by the theory for both the SP algorithm and the SC algorithm.

Our theoretical model also predicts that in unbiased problems, the SP algorithm is likely

to perform well when there is variation in experts and non-experts in the environment. To

test for this feature, we systematically vary the difficulty of problems in our new quiz dataset

to create variation in problem difficulty and the likely mix of novices and experts. Consistent

2The SC algorithm is able to leverage expertise in cases where individuals share a biased common prior.
Such priors may come from a commonly observable public signal. Thus the algorithm will also leverage
expertise in environments where individuals receive both a commonly observed public signal and conditionally
independent private signals. See Palley and Soll (2018) for an alternative probabilistic forecasting algorithm
that is designed to account for more complex signal correlation structures.

4



with our theoretical predictions, the SC algorithm leveraged expertise more effectively than

the SP algorithm for all difficulty levels.

Finally, we compare the performance of the SC and SP algorithms across our two

experiments. We find that the SC algorithm outperforms the SP algorithm in our quiz

datasets and that this outperformance is driven by difficult problems where the SC algorithm

performs well. Surprisingly, the SC algorithm performs poorly in easy quiz problems. We

discuss how this may be due to the treatment of commonly observed signals in the SC

algorithm and briefly discuss how the SC and SP algorithms might be combined to improve

forecasts over each algorithm on its own.

Our paper contributes to the literature by providing a single-question algorithm that

has promising empirical and theoretical properties in terms of expertise. The SC algorithm

is robust to bias and corrects for overconfidence in situations where other confidence-based

aggregation approaches fail. Further, under reasonable assumptions, the SC algorithm has

the intuitive feature that uninformed individuals will be given zero weight and maximally

informed individuals will be given the highest weight.3

The rest of the paper is structured as follows. We present our main theoretical results

in Section 2 and test these results empirically in Section 3. We collect all proofs for the

lemmas and propositions in Appendix C.

2 Theory

We consider a Bayesian model in which a crowd of N forecasters is assembled to predict the

outcome of a single event. The outcome of the event, o ∈ {T, F}, is binary and can be true

or false. Forecasters share a common prior p(T ) that the event is true.

Each forecaster receives a private signal S, that is a random variable taking on real

value realisations in the set {s1, . . . , sm} ∪ {s∅} where 0 ≤ s1 < s2 < · · · < sm ≤ 1 and

s1 < s∅ < sm. As our outcome space is binary, it is without loss of generality that we

normalise the signals so that their value is equal to the posterior belief that an event is

3The weights used in the SC algorithm can also be used in probabilistic forecasting problems. See
Martinie et al. (2020) for a discussion of how the weights of the SC algorithm can be adapted to the
probabilistic forecasting domain and for a comparison of the algorithm to other probabilistic forecasting
algorithms proposed by Palley and Soll (2018) and Satopää et al. (2016). McCoy and Prelec (2017) develops
an alternative Bayesian hierarchical model that can be used in forecasting problems with multiple-choice
answers. A distinguishing feature of the model is that it works in both the single-question and multiple-
question domains. Palley and Satopää (2020) propose a selection criterion that excludes forecasters with
inaccurate meta-predictions from the aggregated crowd forecast. Their selection approach adjusts the number
of experts selected based on the level of noise observed in the forecasters’ predictions of others and is
particularly well suited to situations where meta-predictions have an unknown level of noise.
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true. That is, sj := p(T |sj). We let s∅ represent the case where an individual receives an

uninformative signal so that s∅ := p(T ).

To minimise ambiguity, we will use sj to denote the jth lowest posterior in the set

{s1, . . . , sm} ∪ {s∅}. Thus, it is always the case that s1 < s2. We will use σk to denote

the signal drawn by a particular forecaster k. As each signal is drawn randomly, there is no

inherent order between σ1 and σ2.

We use a left stochastic matrix called an information service to model the distribution

of signals across forecasters in each state.4 Initially, we will assume that all participants

receive signals from the same information service denoted as Q.5 We also assume that the

properties of Q are common knowledge to all forecasters.

An information service is composed of a likelihood matrix [Qoj]2×(m+1). Each element of

the first row of Q represents the probability that the signal is sj given the outcome is o = T .

Likewise, each element of the second row of Q represents the probability that the signal is

sj given the outcome is o = F . For ease, we will denote the first row elements with T and

the second row elements with F . Thus QTj := Q1j = p(sj|T ) while QFj := Q2j = p(sj|F ).

We note two important features of an information service. First, an information service

acts as a transition matrix from a state of nature to a signal and thus
∑

j Qoj = 1 for each

row o ∈ {T, F}. Second, upon receiving a message from an information service, agents revise

their priors using Bayes rule. For any signal that occurs with positive probability (i.e., where

QTj +QFj > 0), the posterior belief that the event is true is given by

p(T |sj) =
p(T )QTj

p(T )QTj + p(F )QFj

.

By construction, this is equal to sj for all signals that occur with positive probability.

It will be useful to classify decision problems based on the properties of Q. The

following definitions help to identify three types of decision problems, which will respond

differently across aggregation problems. We first classify decision problems based on whether

the common prior is biased or unbiased:

Definition 1 A decision problem has an unbiased prior if s∅ = 0.5 and a biased prior

if s∅ 6= 0.5.

We further divide the class of unbiased problems into asymmetric and symmetric de-

cision problems. We will call an information service symmetric if the likelihood of posterior

4See Blackwell (1953), Blackwell and Girshick (1979), Marschak and Miyasawa (1968), Marschak and
Radner (1972) for general treatments of information services.

5In Subsection 2.3, we will relax this assumption and introduce experts who will receive signals from a
more informative information service.
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si in state T is equal to the likelihood of posterior (1 − si) in state F . Symmetry places

restrictions both on the set of outcomes and on the relationship between likelihoods.

Definition 2 An information service is symmetric if (i) s∅ = 0.5, (ii) the cardinality of

the set {s1, . . . , sm} is even, and (iii) QT i = QF (m−i+2) for all i ∈ {1, . . . ,m+ 1}.

Following Prelec et al. (2017), we will focus attention to information services that have

the following property:

Definition 3 An information service Q is responsive if there is a positive probability that

a forecaster votes for the correct answer both when the state is true and when the state is

false: ∑
{i|si≤.5}

QFi > 0 and
∑
{i|si≥.5}

QT i > 0.

Responsive information services require that the bias is not so strong that all forecasters

will go against their own private information and vote with the publicly observable signal in

large samples. The assumption will imply that the expected vote in the true state is larger

than the expected vote in the false state.

Finally, we will use the following partial ordering of signals to evaluate how the algo-

rithm treats individuals with different amounts of information.

Definition 4 Forecaster i has a more informative private signal than forecaster j if

either (i) σi < σj < s∅ or (ii) σi > σj > s∅.

Intuitively, the informativeness of a forecasters private signal is related to the distance

between his posterior and the common prior. We have restricted attention to cases where

σi and σj are either both greater than s∅ or both less than s∅ so that distance is directly

related to the relative changes in the likelihood ratios of the two forecasters.6

We note that the ordering of private signals is related to the extremity of the posterior,

but is not equivalent to extremity in decision problems where there is a biased priors. For

example, in a problem where the common prior is s∅ = .75, a forecaster who has a signal

of σi = 0.5 will have received a more informative signal than a forecaster with a signal of

σj = 0.6.

6For example, if si > sj > s∅, then QTi

QFi
>

QTj

QFj
> p(T )

p(F ) . Thus |si− s∅| > |sj − s∅| implies |QTi

QFi
− p(T )

p(F ) | >
|QTj

QFj
− p(T )

p(F ) |.
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2.1 Single-question forecasting algorithms

We consider single-question forecasting algorithms that use information from predictions

and meta-predictions about the current event only. Let Vi(T |σi) ∈ {0, 1} be the forecaster’s

prediction, or vote, that the event is true given signal σi, and let Pi(T |σi) ∈ [0, 1] be the

forecaster’s probabilistic forecast that the event is true. Further let MV
i (Q|σi) ∈ [0, 1] be

a forecaster’s vote meta-prediction: a forecaster’s meta-prediction of the share of other

forecaster’s that will vote true. Let MP
i (Q|σi) ∈ [0, 1] be a forecaster’s probability meta-

prediction: the forecaster’s meta-prediction of the average probability forecast of all other

forecasters. To simplify notation, we let Vi := Vi(T |σi), Pi := Pi(T |σi), MV
i := MV

i (Q|σi),
and MP

i := MP
i (Q|σi).

We let Xi := (Vi, Pi,M
V
i ,M

P
i ) be forecasters i’s full report and let X = (X1,X2, . . . ,XN)

be the full reports of all forecasters. Each algorithm we consider is a mapping T : X→ {0, 1},
which aggregates the data from a single event into a categorical forecast of whether the event

is true or false. We assume the forecasters are truthful in all the algorithms and that they

randomise their votes uniformly if they have the uninformed posterior of 0.5. This implies

that Vi = 0 if Pi < 0.5, Vi = 1 if Pi > 0.5, and Vi is equally likely to be zero or one when

Pi = 0.5.

We explore the theoretical properties of two alternative meta-prediction algorithms in

this paper: the Surprisingly Popular (SP) algorithm of Prelec et al. (2017) and a variant that

we refer to as the Surprisingly Confident (SC) algorithm. In the SP algorithm, the proportion

of the crowd voting true is compared to the mean vote meta-prediction. If the proportion

of true votes exceeds the average of the vote meta-prediction, the event is predicted to be

true. Otherwise, the event is predicted to be false. Formally,

TSP (X) =


1 if

N∑
i=1

(Vi −MV
i ) > 0

0 otherwise.

Although the standard formulation of the SP algorithm is easy to compute, it is rel-

atively difficult to understand how the algorithm treats forecasters with different signals.

The following lemma provides an alternative “weighted average” formulation of the SP al-

gorithm that helps to make clear how individuals with different information are treated in

the algorithm. As seen in the proof located in Appendix C, the transformation from one

formulation to the other is mechanical and does not rely on any assumptions regarding the

signals received by forecasters and their votes or vote meta-predictions.
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Lemma 1 The SP algorithm can be rewritten as

TSP (X) =


1 if

N∑
i=1

W SP
i Vi > 0.5

0 otherwise,

where each forecaster’s weight is given by the normalised absolute difference between that

forecaster’s vote and their vote meta-predictions:

W SP
i :=

|Vi −MV
i |∑N

j=1 |Vj −MV
j |
.

Proof: All proofs are collected in Appendix C.

In the weighted average formulation of the SP algorithm, the weights are constructed

so that
∑N

i=1W
SP
i = 1. Thus, the weight given to each individual forecaster is proportional

to |Vi−MV
i |, the absolute difference between the forecaster’s vote and the forecaster’s meta-

prediction about the votes of others.

The alternative SC algorithm uses probabilities and probability meta-predictions to

predict the true outcome. Analogous to the SP algorithm, the average probabilistic forecast

(or confidence) is compared to the mean probability meta-prediction. If the mean proba-

bilistic forecast is larger than the mean probabilistic meta-prediction, the event is predicted

to be true. Otherwise, the event is predicted to be false. Formally,

TSC(X) =


1 if

N∑
i=1

(Pi −MP
i ) > 0

0 otherwise.

Like the SP algorithm, the SC algorithm can be represented as a weighted average. In

this representation

TSC(X) =


1 if

N∑
i=1

W SC
i I{Pi>MP

i } > 0.5

0 otherwise,

where (i) I{Pi>MP
i } is an indicator variable that is one when a forecaster’s probability forecast

exceeds their probability meta-prediction and zero otherwise and (ii) each forecaster’s weight

is given by the normalised absolute difference between the forecaster’s probabilistic forecast
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and their probability meta-prediction:

W SC
i :=

|Pi −MP
i |∑N

j=1 |Pj −MP
j |
.

The weighted version of the SC algorithm has the same structure as the weighted

version of the SP algorithm, but has two differences. First, the algorithm uses the dif-

ference between a forecaster’s probabilistic forecast (or confidence) and their probability

meta-prediction (rather than their vote and vote meta-prediction) to identify whether a

forecaster should be recorded as a zero or a one in the final aggregation. As discussed below,

an individual who receives σi > s∅ is predicted to have a probability forecast that exceeds

their probability meta-prediction while the opposite is true when σi < s∅. Thus, the al-

gorithm assigns a forecaster the equivalent of a true vote when they have a signal greater

than the prior, and a false vote when they have a signal less than the prior. Second, the

SC uses the probability forecasts and probability meta-predictions to generate the weights

rather than using the votes to generate the weights. As discussed below this seemingly small

adjustment has important implications in the way that the two algorithms weight forecasters

with different signals.

2.2 Weights and Information

We first ask how the weights used in the SP and SC algorithms relate to information when

all forecasters reports are consistent with Bayes rule. Intuitively, an algorithm will be able

to best exploit the private information of forecasters if forecasters with more informative

private signals contribute more to the algorithms final performance than those who have less

informative private signals. The following propositions shows that the opposite relationship

holds in the SP algorithm in situations where the prior is unbiased:

Proposition 1 In the SP algorithm, if (i) forecaster i has a more informative private signal

than j and (ii) the prior is unbiased, then the weight given to forecaster i will be strictly less

than the weight given to forecaster j.

The intuition for Proposition 1 can be seen in the left side of panel (a) of Figure 1,

which plots out the vote function and a typical vote meta-prediction function over all possible

posteriors in the case of a symmetric information service, which has an unbiased prior. As

can be seen by looking at the vote function, individuals will vote Vi = 0 when σi < 0.5 and

Vi = 1 when σi > 0.5. Thus, the vote is a step function that switches exactly at the unbiased

prior.
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(c) SP Weights in a Biased Decision Problem

(b) SP Weights in an Asymmetric Decision Problem

(a) SP Weights in Symmetric Decision Problems

Figure 1: The left panels show the vote function and a typical vote meta-prediction function
over all possible posteriors in (a) the case of a symmetric information service with an unbiased
prior, (b) an asymmetric information service with an unbiased prior, and (c) a symmetric
information service with a biased prior. The right panels show the weights assigned by the
SP algorithm for each possible posterior in each of the three cases.
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The vote meta-prediction of an individual is based on their belief about the votes made

by all other participants. Given an outcome state o, the expected proportion of true votes

from information service Q is given by

EV (Q|o) =
∑
{i|si≥.5}

γ(Qoi),

where γ(Qoi) = 0.5Qoi if si = 0.5 and γ(Qoi) = Qoi otherwise. A forecaster with signal sk’s

vote meta-prediction about the average vote share from information service Q is

MV (Q|sk) = skEV (Q|T ) + (1− sk)EV (Q|F ).

Noting that EV (Q|T ) > EV (Q|F ) when the information service is responsive, MV (Q|sk) is

a linear function that is increasing in sk. The underlying information service in panel (a) is

symmetric, which implies that MV (Q|s∅) = 0.5.

As seen in the right side of panel (a), the weights for each individual forecaster is equal

to the absolute distance between the vote function and the vote meta-prediction function.

This distance is decreasing as the forecasters signal moves away from the prior in both

directions. Thus, individuals who have signals closer to the common prior will always have

a larger weight than individuals who have signals that are farther away.

With a symmetric information service, the weighing function is also symmetric and

all fully uninformed individual are equally weighted. This is not the case, however, when

we consider asymmetric information services. As seen in panel (b) of Figure 1, when the

information service is asymmetric, MV (Q|s∅) does not necessarily pass through 0.5. As

such, there is a gap in the weight function at s∅. This gap is the main way in which

the SP algorithm is able to correct for asymmetries in the information service that leads

majority voting algorithms to incorrectly predict the state. In particular, an individual who

votes for true but predicts that others are more likely to vote false reveals commonly known

information about the properties of the information service. This information is then used

to increase the weights of individuals who vote against the most popular outcome.

Despite the algorithm taking advantage of information about the asymmetry of the

information service, individuals who have signals closer to the common prior always have a

larger weight than individuals who have signals that are farther away on the same side of

the prior. This implies that forecasters with more informative private signals continue to

receive smaller weights than comparable forecasters with less informative private signals.

Finally, when the prior is biased, if (i) forecaster i has a more informative private signal

than j and (ii) both signals are between the biased prior of s∅ and the uninformed prior of
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0.5, then i will be weighted more than j. However, this relationship is reversed in other parts

of the distribution. This can be seen in the example shown in panel (c) of Figure 1, where

forecasters have a prior of 0.75 and where weights are decreasing for posteriors greater than

s∅ = 0.75 and for signals that are below 0.5.

We now show that the weights in the SC algorithm is well ordered when it comes to

the information contained in the forecaster’s private signals:

Proposition 2 In the SC algorithm, if forecaster i has a more informative private signal

than forecaster j, then the weight given to forecaster i will be strictly greater than the weight

given to forecaster j.

The intuition for Proposition 2 can be seen in the left side of panel (a) of Figure 2,

which plots out the probability forecast function and a typical probability meta-prediction

function over all posteriors in the case of a symmetric information service. As can be seen,

the probability forecast function is a linear line with a slope of 1. The probability meta-

prediction function is also linear and is based on their belief about the probability of all other

participants. Given an outcome state o, the expected average forecast from information

service Q is given by

EP (Q|o) =
∑
si

siQoi.

A forecaster with signal sk’s probability meta-prediction about the forecast of others is given

by

MP (Q|sk) = skEP (Q|T ) + (1− sk)EP (Q|F ).

By the law of iterated expectations, EP (Q) = s∅EP (Q|T ) + (1 − s∅)EP (Q|F ). Thus,

EP (Q|T ) > EP (Q|F ) and MP (Q|sk) is a linear function that is increasing in sk with a

slope less than 1. The law of iterated expectations also implies that the two lines will

intersect at the prior of 0.5. The net difference between the two lines generates a “v” shape

that correctly orders forecasters in terms of the informativeness of their signals.

Panels (b) and (c) of Figure 2 show that the mechanism also correctly weighs fore-

casters according to the informativeness of their signals in asymmetric problems and biased

problems. As seen in panel (b), asymmetric information services do not substantially change

the way the algorithm operates since both probabilities and probability meta-predictions

increase linearly in the posterior. As seen in panel (c), in a biased problem, the probability

function and meta-probability line cross at the prior. Thus, individuals who receive no signal

will still have zero weight.7

7We note that the confidence-weighted algorithm, which calculates the average of all probabilistic forecasts
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(c) SC Weights in a Biased Decision Problem

(b) SC Weights in an Asymmetric Decision Problem

(a) SC Weights in Symmetric Decision Problems

Figure 2: The left panels show a typical probability forecast function and probability meta-
prediction function over all possible posteriors in (a) the case of a symmetric information
service with an unbiased prior, (b) an asymmetric information service with an unbiased
prior, and (c) a symmetric information service with a biased prior. The right panels show
the weights assigned by the SC algorithm for each possible posterior in each of the three
cases.
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The different pattern of weights has implications for the accuracy of the SP and SC

algorithms. The expected weight assigned to true in the SP algorithm as N grows

large is

E[W SP ] := lim
N→∞

N∑
i

W SP
i Vi.

Similarly, the expected weight assigned to true in the SC algorithm as N grows large

is

E[W SC ] := lim
N→∞

N∑
i

W SC
i I{Pi>MP

i }.

The following proposition shows that these expected weights are ordered in unbiased decision

problems and that the SC algorithm will always assigns more weight to the correct state as

N grows large:

Proposition 3 For any unbiased information service, E[W SC ] ≥ E[W SP ] when the correct

answer is true and E[W SC ] ≤ E[W SP ] when the correct answer is false.

Based on the work by Prelec et al. (2017), E[W SP ] ≥ 0.5 when the correct answer is

true and E[W SP ] ≤ 0.5 when the correct answer is false. Thus, in very large samples, both

the SP and the SC answer will generate the correct answer. In small samples, the sample

distribution will converge to a normal distribution with a mean equal to the expected weight

assigned to true. This implies that if the variance of the two algorithms are the same, the

SC algorithm will be more accurate than the SP algorithm.

In Appendix A, we report results from numerical simulations where we randomly con-

structed 100,000 unbiased information services and calculated the variance in the total weight

assigned to the correct state. We find that the variances of the two algorithms are similar in

magnitude. We also calculate the sample size necessary to predict the correct state in 97.5%

of cases under the assumption that the distribution is approximately normal in each sample.

The SC algorithm requires a smaller sample size than the SP algorithm in over 99% of cases.

Appendix A also includes an analytic example where we explore how the SP and SC

algorithms behave in a heterogeneous environment consisting of fully informed forecasters

and forecasters who receive only weak signals. We show that in this setting, the SP algorithm

may require much larger samples to ensure a high level of accuracy because the forecasters

with weak signals will have large weights. This example suggest that the difference in

and predicts true if this value is above 0.5 and false if the value is below 0.5, can also be written as a weighted
average where the numerator of each weight is equal to |Pi−0.5|Vi. This algorithm will generate “v” shaped
weights that are centred at 0.5. Thus, in unbiased problems, if forecaster i has a more informative private
signal than forecaster j, i will have a larger weight. This relationship does not hold, however, in biased
problems because a forecaster with a more informative signal may have a posterior that is closer to 0.5.

15



weight functions may be important in difficult problems where there is only a small fraction

of forecasters who know the correct answer. We study how the performance of the two

algorithms relate to task difficulty in Section 3.

2.3 The Weighting of Experts

Although our first result suggests that the SP algorithm may over-weight uninformed indi-

viduals and under-weight informed ones, it ignores a key advantage of crowd forecasts. In

problems with an unbiased prior, the votes of forecasters who receive no information will

be random while the votes of those who know the correct state will be perfectly correlated.

This will cause the votes of the uninformed forecasters to partially cancel out as crowd size

increases and may offset the weighting of individuals.

To understand the aggregate properties of both algorithms, we consider a more general

environment in which individuals have access to one of two information services that are

ordered in terms of informativeness. We refer to experts as individuals who draw signals

from the more informative information service and novices as individuals who receive draws

from the less informative service. Thus an expert is defined as individual who is expected

to be better informed about the correct answer prior to being asked a particular question.

We consider a variation of our baseline environment where we consider the limiting

case where N is countably infinite. We divide forecasters in the population into two groups:

experts and novices. Let QE be the information service used by expert forecasters and let

QN be the information service used by novices. We assume that the proportion of experts in

the crowd is known to all parties and given by θ ∈ [0, 1]. We also assume that the properties

of QE and QN are common knowledge.

We continue to assume that all forecasters make reports that are consistent with Bayes

rule and we make three additional assumptions regarding the information services used by

novices and experts.

Assumption 1 Information service QE is more informative than information service QN :

there exists a non-negative stochastic matrix Z = [Zki](m+1)×(m+1) such that

QN = QEZ.

Assumption 1 says that when QE is more informative than QN , QN
oi =

∑
kQ

E
okZki. As

we are multiplying across the rows of QE, we can interpret Zki as the conditional probability

that when message k is received by QE, message i was received by QN . Thus Zki = p(si|sk)
and QE is more informative than QN if it is possible to garble the signals of QE and generate
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QN .8 Note that Z is a non-negative stochastic matrix with
∑

i Zki = 1.

Assumption 2 Experts and Novices draw conditionally independent signals: for a signal si

from QN and a signal sk from QE,

p(si, sk) = p(si|T )p(sk|T )p(T ) + p(si|F )p(sk|F )p(F ).

Assumption 3 Information service QE is responsive.

Assumptions 2 extends the assumption that signals are conditionally independent after

conditioning on the state to an environment with two information services. The assumption

rules out perverse situations where the garbling matrix creates additional information about

the signals of others. Assumption 3 requires that at least expert forecasters will vote for the

correct state with a positive probability. This assumption is necessary for the SP algorithm

because it is vote based, but is not required for any result related to the SC algorithm.

Assumptions 1 and 2 imply that the information services are ranked but that signals

from the two information services are independent once we condition for the state. Assump-

tion 2 is sufficient for the monotone likelihood ratio property (MLRP) to hold for signals

between any two information services. This property implies that when an individual re-

ceives a high signal, he believes that other forecasters are also more likely to receive a high

signal.

Lemma 2 For signals si > sj drawn from Qt, t ∈ {N,E}, and signals sk > sl drawn from

Qτ , τ ∈ {N,E}, the monotone likelihood ratio property holds:

p(si|sk)p(sj|sl) > p(sj|sk)p(si|sl). (1)

Assumption 3 ensures that when the prior is biased, a subset of experts are willing

to change their vote away from the prior for at least some realisation of the signal. Com-

bined with MLRP, this assumption is enough to prove a modified version of PSM’s theorem

regarding the average estimates of the votes:

8In cases where the signal space is continuous, it is common to allow for an infinite number of forecaster
types but to assign each type a simpler two-signal information service with a high and a low signal and where
only the columns representing these signals are included. In this two-signal case, QA is more informative
than QB if the posteriors of QA “bracket” the posteriors of QB . That is, the posteriors that result from
receiving the low and high signal from information service QA are closer to zero and one, respectively, than
the posteriors that result from receiving the low and high signal from information service QB . It is also
possible to order information services in the continuous case by using Blackwell’s Theorem (Blackwell 1951).
See Blackwell and Girshick (1979) for a detailed discussion of Blackwell’s Theorem and some additional
approaches to ordering information services.

17



Lemma 3 In the SP algorithm, if Assumptions 1-3 hold, then the average estimate of the

votes for the correct answer will underestimate the true proportion of votes for the correct

answer as N →∞.

The SP mechanism will predict the correct answer if the vote meta-prediction under-

estimates the true proportion of votes for the correct answer. Thus, Lemma 3 implies that

the SP mechanism will continue to predict the correct answer in the limit when there are

both experts and novices. The following lemma shows that the SC algorithm has a similar

property when Assumption 2 holds:

Lemma 4 In the SC algorithm, if Assumptions 1-2 hold, then the average probability meta-

prediction will be below the average probability forecast when the state is true and above the

average probability forecast when the state is false as N →∞.

Note that when QE = QN = Q, Assumptions 1 and 2 always hold. Thus Lemma 4

implies that the SC algorithm is robust to bias in the initial model where all forecasters draw

signals from the same information service.

2.4 The Expected Total Contribution of an Expert or Novice

We now turn to the question of how the SP and SC algorithms weight experts and novices.

Given information services QE and QN , a forecaster with signal sk will make a vote meta-

prediction of

MV (θ|sk) := θMV (QE|sk) + (1− θ)MV (QN |sk),

where θ is the proportion of experts in the environment, MV (QE|sk) is the vote meta-

prediction of forecasters from information service QE, and MV (QN |sk) is the vote meta-

prediction of forecasters from information service QN . Thus, the expected vote meta-

prediction of forecasters in information service Qt (t ∈ {N,E}) when the state is o is given

by

E[MV (θ|Qt, o)] :=
∑
k

MV (θ|sk)Qt
ok.

Likewise, a forecaster with signal sk will make a probability meta-prediction of

MP (θ|sk) := θMP (QE|sk) + (1− θ)MP (QN |sk).
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Thus, the expected probabilistic meta-prediction in information service Qt (t ∈ {N,E})
when the state is o is given by

E[MP (θ|Qt, o)] :=
∑
k

MP (θ|sk)Qt
ok.

The quantities
[
E[V (Qt|T )] − E[MV (θ|Qt, T )]

]
and

[
E[MV (θ|Qt, F )] − E[V (Qt|F )]

]
represent the expected difference between the votes of forecasters with information service

Qt and their vote meta-prediction, for the true and false states respectively. We will call these

quantities the expected total contribution of an expert or novice in the SP algorithm

in state T and F respectively since they represent the total expected impact of a randomly

selected individual from a given group taking into consideration both their vote and their vote

meta-prediction under the given state. Similarly, we will call
[
E[P (Qt|T )]−E[MP (θ|Qt, T )]

]
and

[
E[MP (θ|Qt, F )]− E[P (Qt|F )]

]
the expected total contribution of an expert or novice

in the SC algorithm.

In state T , the expected total contribution of an expert exceeds the expected contri-

bution of a novice in the SP algorithm if

[
E[V (QE|T )]− E[MV (θ|QE, T )]

]
>
[
E[V (QN |T )]− E[MV (θ|QN , T )]

]
.

This leads us to our definition for leveraging expertise:

Definition 5 An algorithm leverages expertise if the expected total contribution of an

expert exceeds the expected contribution of a novice in all states.

In the SC algorithm, an individual’s weight is strictly increasing in their signal. Using

Blackwell’s theorem, we can show the following result:

Proposition 4 The SC algorithm leverages expertise in all environments where Assump-

tions 1 and 2 hold.

Proposition 4 shows that in a very general set of decision problems, the SC algorithm

is able to leverage expertise. The result naturally generalizes to any number of information

services as long as they are ranked in terms of informativeness. Thus, under a wide range of

problems, the mechanism is predicted to leverage expertise.

In contrast, in Appendix B we provide two counter examples where the SP algorithm

fails to leverage experts. These examples show that when the information services is asym-

metric, it is possible to find information services where the total contribution of experts is
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less than that of novices in at least one state. Thus, Assumptions 1-3 are not sufficient to

ensure that experts are leveraged and the SP algorithm may be less effective in heterogeneous

environments. We provide two additional properties of the information service that are suf-

ficient to ensure that the SP algorithm leverages expertise in symmetric decision problems

and provide an example that helps to explain where these additional properties come from.

The example suggests that the SP algorithm is likely to perform best in problems where

there is a moderate number of experts.

2.5 Properties of the SC algorithm when confidence measures are

noisy

Thus far we have considered how the SC algorithm behaves in an ideal setting where all

forecasters are Bayesian and where the confidence elicited by each individual coincides with

their posteriors. In this section we discuss some strengths and weaknesses of the SC mech-

anism that arise when we move from the this ideal setting to one where we incorporate the

known biases that exist when eliciting confidences.

As noted in the introduction, a key issue for confidence-weighted algorithms is that

they are sensitive to particular types of overconfidence. For instance, as discussed by Hertwig

(2012), using confidences to weight forecasters can be problematic in environments where

individuals who hold the majority opinion are overconfident while individuals who hold the

minority opinions are under-confident. Such environments can arise when confidences are

correlated with the majority viewpoint rather than perfectly relating to accuracy (Koriat

2008).

A surprising result is that in large samples, the SC algorithm will continue to correctly

predict the correct state in settings where overconfidence occurs under two assumptions

about confidences and probability meta-predictions. First, on average, confidences must be

increasing in the underlying posterior of an individual forecaster. Second, forecasters must

incorporate both their own overconfidence and the overconfidence of others into their meta

prediction. We discuss this assumption below after a formal description of our result.

We begin by generalizing the model of Section 2.3 to allow for errors in the relationship

between signals and reported confidences.

Definition 6 Forecasters are systematically miscalibrated if there exists a weakly in-

creasing function c : [0, 1] → [0, 1] and a right stochastic matrix [Rij]m+1,m+1 such that

(i) the probability that an individual with posterior si reports confidence c(sj) is given by

Rij := p(c(sj)|si); (ii) for any two posteriors si > sj, c(si) ≥ c(sj); (iii) there exists
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two posteriors si > sj that occur with positive probability where c(si) > c(sj); and (iv)∑
j c(sj)Rij = c(si) for all i.

Our definition of systematic overconfidence allows for forecasters to systematically mis-

apply Bayes rule and to report confidences that are both too high and too low relative to the

true posterior. The confidence function, c(·), allows for almost any non-decreasing mapping

from true posteriors to confidence reports while the additional error structure allows for

additional noise between signals and reports. This error structure is very general and can

facilitate most behavioural patterns of overconfidence observed in the literature. In partic-

ular, it can accommodate the two main behavioural patterns of overconfidence discussed in

Liberman and Tversky (1993) and Griffin and Brenner (2004): general overconfidence, the

tendency for all forecasters to assign probabilities that are too close to 1 for the choice that

they believe is correct; and specific overconfidence, the tendency for forecasters who believe

one answer is correct to assign probabilities that are too close to 1 and for forecasters who

believe the other answer is correct to assign probabilities that are too close to 0.5.9 10 It

can also accommodate patterns of under-confidence, which is sometimes found in decision

problems that are easy (Erev et al. 1994).

When forecasters are systematically miscalibrated, the average confidence of individuals

from information service t ∈ {N,E} in state o ∈ {T, F} is given by

EC(Qt|o) =
∑
i

(∑
j

c(sj)Rij

)
Qoi =

∑
i

c(si)Qoi.

We will say that a forecaster’s probability meta-prediction is fully adaptive if their meta-

prediction (i) uses their confidence to assess the likelihood of each state of the world, and

(ii) fully predicts the overconfidence of both novices and experts. Thus, an individual who

is fully adaptive would report that the average confidence for forecasters from information

service Qt is:

MC(Qt|c(sk)) = c(sk)EC(Qt|T ) + (1− c(sk))EC(Qt|F ).

The following proposition shows that under the assumption of fully adaptive meta-

predicitons, the SC algorithm will generate the correct answer for any decision problem

where confidence reports are systematically miscalibrated:

9Although we allow only mean zero errors to be added at each confidence, the relatively weak conditions
imposed on the confidence function, c(·), means that we can also model truncation bias that may occur when
confidences have symmetric errors that are truncated on [0, 1]. In this case, c(si) would simply be equal to
the expectation of si over all realizations of the error.

10In fact, as we show in Appendix E, both types of overconfidence can be observed in our empirical results.
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Proposition 5 If forecasters are systematically miscalibrated and all forecasters have fully

adaptive meta-predictions, then the average probability meta-prediction will be below the av-

erage reported confidence when the state is true and above the average reported confidence

when the state is false as N →∞.

Although our theoretical result requires a strong assumption about the average meta-

prediction in the population, there are reasons to suspect that the algorithm will improve

upon other confidence-weighted algorithms even when the assumption does not hold. As dis-

cussed in Koriat (2008), Koriat (2012), and Hertwig (2012), confidence-weighted algorithms

typically fail in “wicked” problems where the position held by the consensus is wrong. In

these problems, individuals who endorse the consensus answer tend to be over-confident while

those who endorse the minority answer tend to be under-confident. For the SC algorithm

to improve forecasts relative to the confidence-weighted algorithm, the average probability

meta-prediction must be above 0.5 when the majority of forecasters vote ‘true’ but the cor-

rect answer is ‘false’, and below 0.5 if the majority of forecasters vote ‘false’ but the correct

answer is ‘true’.11 This will be the case if the average probability meta-prediction and the

consensus answer both lie on the same side of the uninformed prior. This relationship is

likely to hold if beliefs about the consensus position not only influences each forecasters’

confidence report but also their belief about the confidence reports of others.12

We note that if forecasters reported c(σi) = 0 when σi < 0.5, c(σi) = 1 when σi > 0.5,

and randomizes between 0 and 1 when σi = 0.5, then the fully adaptive meta-prediction

would be to report the vote share. Thus, there exists a systematically miscalibrated decision

problem where the reports of forecasters coincides with those elicited in the SP algorithm.

This insight implies that in settings where forecasters are severely overconfident, the relative

rankings of the two algorithms with respect to expertise and average vote weights may not

hold. As such, we highlight some other strengths and weaknesses of the two algorithms

before moving to the empirical section of the paper.

A clear advantage of the SP algorithm is that it elicits frequency information rather

than probabilistic information from forecasters. Vote meta-predictions have the advantage

that the forecasters do not have to estimate the level of overconfidence in the environment

11For example, suppose that the consensus answer is true, but the correct state is false. Then, if the
average meta-prediction is 0.75, the confidence-weighted algorithm will correctly predict false if the average
probability forecast is between [0, 0.5] while the SC algorithm will correctly predict false if the average
probability forecast is between [0, 0.75].

12Note that in cases where the consensus is correct, the SC algorithm will continue to predict the correct
answer in large samples as long as the average probability meta-prediction is closer to the uninformed prior
than the one calculated with forecasters who are fully adaptive. Thus, as long as forecasters don’t over
predict the overconfidence of others, the SC algorithm and confidence-weighted algorithm are likely to both
perform well in questions where the consensus is correct.
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when forming their belief. Thus, vote meta-predictions may be more accurate in settings

where overconfidence is present.13 Further, a large literature exists that suggests that fre-

quency information is encoded more naturally in the brain and may be more natural for

individuals to express (Hintzman et al. 1982, Gigerenzer 1984, Gigerenzer et al. 1991). Thus,

the SP algorithm is likely to have lower cognitive requirements than the SC algorithm.

Relative to the SP algorithm, the SC algorithm provides a larger communication space

for providing information about signals and meta-knowledge. In particular, the SC algorithm

allows for forecasters to reveal that they are (i) uninformed or (ii) have limited insights into

the information held be others and gives these forecasters little weight.

3 An Empirical Exploration of the SP and SC algo-

rithms

In this section, we empirically estimate the weights generated in the SP and SC algorithms

and study how these algorithms treat experts and novices. We concentrate our analysis on

two experiments. The first is a replication of the US states capital dataset of Prelec et al.

(2017). As seen in Prelec et al. (2017), forecasters in this dataset use what appears to be

a heuristic based on population size to predict whether a city is a capital city in problems

where they are uninformed. This heuristic naturally leads to a biased prior and is likely

to lead to specific overconfidence — the tendency for forecasters who believe the consensus

position is correct to be overconfident and forecasters who believe the consensus position

is incorrect to be under-confident. We are interested in this environment since the SP is

specifically designed to improve forecasting in biased environments and we would predict

that this algorithm will perform well.

The second experiment uses a quiz dataset comprised of 500 problems that vary across

five levels of difficulty. As seen in the theory section, the relative weighting of experts

and novices is related to the proportion of experts in the environment. As we increase the

difficulty of decision problems, we would expect the proportion of experts in the dataset to

fall. We are thus interested in the relative performance of the SP and SC algorithm as we

move from easy problems to hard ones, and we would predict that the SP algorithm leverages

expertise most effectively with an intermediate number of experts.

13Tereick (2019) argues that vote meta-predictions may be anchored towards the prior and proposes a
self-aggregation algorithm that is more robust to these types of biases. An incentive compatible approach
proposed by Baillon et al. (2020) to eliciting meta-predictions using a market-based approach with random-
ized price offers can also potentially be used to mitigate the biases that occur due to overconfidence and
inattention.
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We note that the actual expertise of individuals in our dataset is not observable and

thus our empirical strategy requires us to proxy for expertise by using the track record of

forecasters on other problems. This proxy is based on the assumption that expertise is

correlated across questions and uses the fact that an individual who receives signals from

a more informative information service will be correct more often than an individual who

receives information from a less informative information service on average.

3.1 Experiment 1

Experiment 1 replicates PSM (2017)’s Study 1, which asked true or false questions about

the capital cities of US states. For each state, participants were presented with the largest

city and asked whether or not it was the state capital. This dataset provided a natural

environment to study the mechanisms underlying the SP algorithm’s performance in a biased

setting since PSM found in their original study that forecasters typically believe that the

largest city in a state is the capital when they do not know the true answer. As this heuristic

does not often predict whether a city is the state capital, the underlying information service

is likely to be biased in favour of answering true. This allows informed individuals to make

meta-predictions that differ substantially from their vote and potentially gives informed

individuals large weights.

Our replication used a larger sample size than the original PSM study in order to

compare the patterns of predictions and meta-predictions made by the best-performing and

worst-performing forecasters in the crowd. In line with PSM, we collected forecasters’ votes

and meta-predictions about the average vote of others. Additionally, in order to compare the

responses used by the SP algorithm and the SC algorithm, we also collected each forecaster’s

forecast of the likelihood that the event is true and their meta-prediction of the average

forecast of all other forecasters.

3.1.1 Methods.

We conducted the experiment online, with all participants recruited using Amazon Mechan-

ical Turk. In PSM’s experiments, forecasters were monetarily incentivised for accurately

predicting the outcome as well as accurately predicting the proportion of the crowd en-

dorsing each response. As our experiment was performed online, we removed the financial

incentives to reduce the likelihood of participants looking-up the answer. We tested 100

respondents and only respondents inside the US were able to participate. Each survey was

administered using Qualtrics, and participants were paid a flat fee of US $2.50 for completing

the survey. Participants were asked to answer each question as honestly as they could, and
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were asked not to cheat (e.g., by looking up any of the problems online). Eleven individuals

who reported cheating at the task or had failed to complete the survey were excluded from

the analyses, but were still paid. We completed data collection in January 2020 and analyses

were conducted on the data of the remaining 89 participants.

The survey consisted of 50 trials (one for each US state, in alphabetical order of state).

On each trial, participants were shown the sentence “X is the capital of Y” where X was the

most populous city in the state Y. For example, on the first trial, all participants saw the

bolded statement “Birmingham is the capital of Alabama.” For each statement, participants

were asked to answer four questions:

1. Is this statement more likely to be true or false?

2. What percentage of other people do you think thought the bolded statement was true?

3. What is the probability that the statement is true?

4. What is the average probability estimated by the other forecasters?

Forecasters were restricted to probabilities between 0 and 50 on question 3 if they

reported that the statement was more likely to be false and between 50 to 100 if they

reported that the statement was more likely to be true. Thus all participants were required

to provide votes and probability forecasts that were consistent.

3.1.2 Weights in the SP and SC algorithms:

Our theoretical model predicts that the SP weights assigned to individuals will decrease

linearly as one moves away from the uninformative posterior of 0.5. However, because the

states dataset is predicted to have a biased prior, we would predict that there will be a gap

in the weight function at 0.5 and that this gap may lead false votes to be weighted more

than true votes. To test for this, we use an individual’s probabilistic forecast as a proxy for

the forecaster’s posterior14 and estimate a linear weight function of the form

W SP
ik = α + β1|Pik − 0.5|+ β2Vik + εik, (2)

14In a Bayesian framework, an individual’s forecast should be their posterior. Although this is not always
the case empirically, probabilistic forecasts are strongly predictive of an individuals actual likelihood of
being correct in the states dataset. Using a simple linear regression where we regress the probability of being
correct on the absolute difference between an individual’s probabilistic forecast and the uninformed prior of
0.5, an individual with a probabilistic forecast of 0.5 is correct 46.7 percent of the time while individuals
with a probabilistic forecast of either 0 or 1 are correct 65.1 percent of the time.
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in which Wik is the numerator of the SP weight of subject i in decision problem k, Vik is their

vote, Pik is the probabilistic forecast and εik are errors that are clustered at the individual

level. We use the numerators of the SP weights here as they always fall between 0 and 1 and

are fully comparable across problems. We predict that β1 < 0, which would indicate that

the weights are decreasing in the informativeness of the forecaster’s signal between 0 and

0.5 and between 0.5 and 1. Based on PSM, we would also predict that β2 < 0, which would

indicate that the prior is biased towards true (see panel (c) in Figure 1 for the intuition).

For the SC algorithm, our theoretical model predicts that weights are upward sloping

as one moves away from the prior.15 A proxy for this (unobserved) prior is given by the

intersect between the identity line where the probability forecast is equal to itself and a

regression line of the probability meta-prediction on the probability forecast. In the states

data, this point is at 0.74. We then estimate a linear regression of the form

W SC
ik = α + β1|Pik − 0.74|+ εik,

in which W SC
ik is the numerator of the SC weight of subject i in decision problem k, Pik is the

probabilistic forecast and εik are errors that are clustered at the individual level. We predict

that β1 > 0, which would indicate that the weights are increasing in the informativeness of

signals. We find the following:

Result 1 Consistent with the theoretical model predictions, weights in the SP algorithm are

decreasing in the distance from the 0.5 and there is a large gap in the weight function at

0.5. This gap leads to larger weights for false votes than for true votes. Weights in the SC

algorithm are increasing in the distance away from the uninformed prior.

Support for Result 1 is given in Figure 3, which plots the relationship between weights

and the forecaster’s posterior for the SP algorithm (top) and the SC algorithm (bottom).

The black solid line in each graph is the predictions from the theoretical models while the

dashed line is the estimates from a non-parametric kernel regression.

As seen in the top graph, the magnitude of forecasters’ signals (|Pi,k − 0.5|) is a

significant negative predictor of the forecasters’ weight in the SP algorithm, β1 = −0.41,

F (1, 88) = 40.61, p < .001. Thus, consistent with our predictions, the SP weights appear to

be decreasing in the distance away 0.5. Additionally, a forecasters’ vote (Vik) is a significant

negative predictor of the forecasters weight, β2 = −0.24, F (1, 88) = 73.47, p < .001. This

can be seen by the apparent gap in the weight function at 0.5, which suggests a strong bias

15Note that a biased prior therefore has a qualitatively different effect on the weighting function of the
SC algorithm. In the SP weights, a biased prior leads to a gap in the weighting function at 0.5. In the SC
weights, a biased prior leads to a shift in the kink point where forecasters are assigned the lowest weight.
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toward true responses in the dataset.16 The gap is large enough that the predicted weights

of all forecasters voting false are larger than the weights of forecasters voting true in the

model specification. As seen below, the gap helps the SP algorithm to predict the correct

answer in most of the decision problems.

As seen in the bottom panel, the SC algorithm has weights that are increasing in the

distance away from the predicted prior, with a significant and large positive slope in our

model that is consistent with our predictions, β1 = 0.53, F (1, 88) = 69.5, p < .001. On

average, better-informed forecasters therefore are generating larger weights. The weights

assigned to forecasters who predict that an event is false with certainty are particularly

high, with an average weight that is at least twice as large as the weight assigned to any

forecaster who voted true.

3.1.3 Expertise in the SP and SC algorithms:

Having seen that the weights of our two algorithms match our theoretical predictions, we now

explore how forecasters’ total contributions relate to expertise. As a first approach, we ranked

and sorted forecasters based on their mean accuracy computed using leave-one-out cross-

validation and performed a median split between the best-performing individuals (“high-

performers”) and worst-performing individuals (“low-performers”). For the SP algorithm,

we then compared the mean vote for each group to their mean vote meta-predictions for

true and false problems separately. For the SC algorithm, we instead compared the mean

probability forecast for each group to their mean probability meta-prediction.

The SP and SC algorithms leverage expertise if the average total contribution of an

expert exceeds the average total contribution of a novice for both true and false problems.

We find the following:

Result 2 In the states data, the average total contribution of high-performers in the SP

algorithm is statistically greater than that of low-performers in problems that are false, but

there is no significant difference in problems that are true. The total contribution of high-

performers in the SC algorithm is statistically greater than that of low-performers for both

true and false problems.

Support for Result 2 is provided in Figure 4, which compares the pattern of responses

for high-performers and low-performers in the States dataset for both algorithms. The

16As we show further below, weights in the SC algorithm are increasing in distance away from an unin-
formed prior of approximately 0.74. This implies that the gap in the SP weighting function is most likely
due to a biased prior, rather than forecasters having access to asymmetrical information services. As we see
in Appendix D, this also appears to be the case in Experiment 2.
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Figure 3: The relationship between forecasters’ posterior and the weight assigned to them
by the SP algorithm (top panel) and the SC algorithm (bottom panel) for the States Data.
The solid black lines are the predictions from the theoretical models. The dashed line is
from a non-parametric kernel regression.
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mean of high-performers’ responses are shown as red circles, the mean of low-performers’

responses are shown as blue crosses, and the shaded regions in these plots indicate where

each algorithm would produce correct predictions and where the total contribution of the

group has the correct sign. The horizontal (and vertical) distance from the reference line

to each point corresponds to the absolute difference between that group’s mean vote (or

probability forecast) and their mean vote (or probability) meta-prediction. In the top panels,

the distance between each point and the dotted line is therefore proportional to the total

contribution to the SP algorithm for that particular group and event. Similarly, the distances

in the bottom panels are proportional to the total contribution to the SC algorithm for each

group and event.

We used paired sample t-tests to compare high-performers’ and low-performers’ average

total contributions separately for problems where the outcome was true and problems where

the outcome was false. As seen in the top left panel of Figure 4, high- and low-performers are

treated similarly in the SP algorithm for the true problems. The average total contribution

of a low-performer was 0.255 while the average total contribution of a high-performer was

0.259. There was no significant difference in high-performers’ and low-performers’ average

total contributions on the 17 true problems in the dataset, t(16) = 0.506, p = 0.62. On the

false problems (the top right panel), the average total contribution of a low-performer was

0.281, while the average total contribution of a high-performer was 0.383. High-performers

therefore had significantly higher average total contributions than low-performers on the 33

false problems in the dataset, t(32) = 9.26, p < .001.

As seen in the bottom set of panels of Figure 4, high-performers have a higher average

total contribution in the SC algorithm than low-performers for both true and false problems.

On the true problems, the average total contribution of a low-performer was 0.116 while the

average total contribution of a high-performer was 0.154. High-performers had a significantly

higher total contribution than low-performers on the true problems, t(16) = 5.35, p < .001.

On the false problems, the average total contribution of a low-performer was 0.141 while

the average total contribution of a high-performer was 0.247. High-performers therefore

also had significantly higher total contribution than low-performers on the false problems,

t(32) = 9.85, p < .001.

In Appendix D, we explore an alternative specification where we divide forecasters

into quartiles. Consistent with the results here, forecasters in the best-performing quartile

have a higher weight in the SC algorithm than the SP algorithm while forecasters in the

worst-performing quartile have a lower weight in the SC algorithm than the SP algorithm.

Taken together, the data from the first experiment supports the results from the theo-

retical model. The weights in the SP algorithm are decreasing as a participant’s probabilistic
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Figure 4: The mean responses from high-performers (red circles) and low-performers (blue
crosses) on each question in the States dataset. The top two panels show each group’s
mean votes compared to their mean vote meta-predictions on the true problems (left) and
false problems (right). The bottom two panels show each group’s mean probability forecast
compared to their mean probability meta-prediction for the true problems (left) and the
false problems (right). The diagonal line indicates where each group’s vote (or forecast) is
identical to their vote (or probability) meta-prediction. The shaded regions indicate where
each algorithm would generate correct predictions.
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forecast moves away from the uninformed posterior of 0.5 and the algorithm corrects for bias

by generating a discontinuity in the weight function at 0.5. This gap ensures that the to-

tal contribution of high-performers exceeds that for low-performers on the false problems,

but there is no statistically significant difference for true problems.17 By contrast, the SC

algorithm has weights that are increasing as the probabilistic forecast moves away from the

estimated prior. As a result, high-performers are over-weighted by the SC algorithm in both

true and false problems.

3.2 Experiment 2

Our theoretical model suggests that the performance of the SP algorithm may vary with the

proportion of experts and non-experts in the crowd. To create variation in these proportions,

our second experiment explores how the relative performance of the SP algorithm and SC

algorithm changes with task difficulty.

3.2.1 Methods.

We generated 500 science statements at a US primary and secondary grade school level.

Problems were adapted from worksheets on the Education Quizzes website, and then con-

verted into true or false statements.18 Approximately 2-3 problems were taken from each

worksheet from the Biology, Chemistry, Geography, Physics, and General Science categories,

spanning from grades 1 to 12, broken up into five levels of difficulty (grades 1 and 2; grades

3, 4, and 5; grades 6, 7, and 8; grades 9 and 10; and grades 11 and 12). We coded “difficulty

1” as the easiest difficulty, and “difficulty 5” as the hardest difficulty. We treated each set

of 100 problems of the same difficulty as an individual dataset.

We recruited 500 respondents from Amazon Mechanical Turk; only respondents inside

the US were able to participate in the experiment. Participants were paid a flat fee of $4.00

for completing the survey. The survey was conducted on the Qualtrics platform. Participants

were asked to answer each question as honestly as they could, and were asked not to cheat

(e.g., by looking up any of the problems online). There were 41 individuals who had reported

cheating at the task or had failed to complete the survey. These people were excluded from

the analyses and analyses were conducted on the data of the remaining 459 participants.

Participants completed 100 trials each, with each trial comprising one statement which

was either true or false, and then followed by the same questions we asked in Experiment 1.

17This result makes sense in light of the weights shown in Figure 3. As seen there, the prior is 0.74 and a
forecaster with no information will have a weight that is smaller than a forecaster who knows with certainty
that the answer is false but larger than a forecaster who knows with certainty that the answer is true.

18http://www.educationquizzes.com/us
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Half the statements at each level of difficulty were true, and the other half were false. Each

participant saw 20 statements from each level of difficulty, and statements were presented in

one of five randomised orders. Participants who took part in any of our previous experiments

were excluded from participating. Data collection for all five datasets was completed in July

2019.

Unlike Experiment 1, we did not force participants’ probabilistic forecast to match their

votes. Instead, participants who provided votes that were inconsistent with their probability

forecasts (i.e., voting “true” but predicting a probability of less than 50% of the statement

being true, or voting “false” but predicting a probability of greater than 50% of the statement

being true) were excluded from the analysis for that particular question. Approximately

11.3% of responses in the dataset were excluded for this reason.19

In Appendix D, we show that the shape of the weight functions and the relative weight-

ing of the algorithms is similar to the results in Experiment 1. Here, we concentrate on how

the two algorithms treat experts. We again ranked and sorted forecasters based on their

mean accuracy computed using leave-one-out cross validation. We performed a median split

between the best-performing individuals and the worst-performing individuals. This exercise

was performed for each grades dataset separately and for all five datasets combined. In the

analysis for individual grades, mean accuracy was computed using data only from the partic-

ular grade. We then computed and plotted the average contribution of high-performers and

low-performers for the SP and SC algorithm on the test problems. We find the following:

Result 3 In the quiz data, the average total contribution of a high-performer is statistically

significantly greater than that of a low-performer in both the SP and SC algorithms for both

true and false problems.

Figure 5 shows the average total contribution of high-performers for each algorithm

on each dataset. Aggregating across all 500 problems in the dataset, high-performers had

a larger average total contribution than low-performers in both the SP algorithm and SC

algorithm. For the SP algorithm, low-performers had an average total contribution of 0.228

whereas high-performers had an average total contribution of 0.272; the difference between

average total contributions of high-performers and low-performers is significant, t(499) =

11.6, p < .001. For the SC algorithm, low-performers had an average total contribution to

the SC algorithm of 0.098 whereas high-performers had an average total contribution of 0.134.

The difference between average total contributions of high-performers and low-performers is

also significant, t(499) = 18.4, p < .001.

19We planned to remove inconsistent forecasters prior to running the experiment. However, as the pro-
portion of omitted decisions is relatively large, we also checked to see how both algorithms behave in the full
sample. The only substantive difference is noted in footnote 21 below.
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Figure 5: High-performers’ average contributions to the SP algorithm and SC algorithm
for each of the five individual difficulties and overall across all five difficulties in the quiz
dataset. The left panel shows high-performers’ share of the crowd contribution on the true
events and the right panel shows high-performers’ share of the crowd contribution on the
false events. The dotted line indicates where high-performers and low-performers have equal
contributions to each algorithm’s decision.

At the dataset level, high-performers had higher contributions than low-performers in

the SP algorithm on all but the easiest difficulty. The SC also assigned greater weights to

high-performers than low-performers in all but the easiest difficulty. However, we can see

that at both the dataset level and the aggregate level, high-performers’ contributions to the

SC algorithm (relative to low-performers’ contributions) were larger than their contributions

to the SP algorithm.

3.3 Performance of the SP and SC algorithms

Thus far we have seen that the SC algorithm leverages informed forecasters both theoretically

and empirically and assigns larger weights to forecasters who are correct most often and

smaller weights to forecasters who are correct least often. In this section, we study whether

these properties translate into improved prediction performance.

To assess prediction performance, we use Matthews correlation coefficient (MCC) as

our assessment criterion. This criterion takes into account the large number of false problems

in the states dataset, but is similar to accuracy in the quiz datasets where the number of true

and false problems are equal. In addition to the SP algorithm and majority voting, we also
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report the performance of two alternative algorithms that use confidences: the traditional

“confidence-weighted” algorithm, which calculates the average probability forecast and as-

signs a prediction of true if this forecast exceeds 0.5 and a prediction of zero otherwise, and

the max-confidence algorithm, which calculates the average half-range confidence of forecast-

ers who predict true and the average half-range confidence of forecasters who predict false

and predicts the larger of these two values.20

We use 95% Confidence Intervals (CIs) to test whether there was a statistically sig-

nificant difference in performance between the SC and the other algorithms. We compute

95% CIs for the mean difference in MCC between the SP algorithm and the SC algorithm

for each of the six datasets from Experiment 1 and 2 and in the aggregate over the five quiz

datasets. We find the following result:

Result 4 The SC algorithm has similar performance to the SP algorithm in the States

dataset and outperforms the SP algorithm in the Quiz dataset. The performance of the

SC algorithm in the Quiz dataset is driven by high accuracy in the more difficult decision

problems. By contrast, the SC algorithm performs poorly relative to other algorithms in the

easiest decision problems.

Support for Result 4 is given in Figure 6, which shows the MCC for the SP and SC

algorithm relative to the other three algorithms tested. The SC algorithm significantly

outperformed the SP algorithm on Grades 3 dataset (95% CI: [.019, .320]) and Grades 4

dataset (95% CI: [.105, .340]). There was no significant difference in performance between

the SC algorithm and SP algorithm on States dataset (95% CI: [-.210, .224]), the Grades

2 dataset (95% CI: [-.078, .213]), or the Grades 5 dataset (95% CI: [-.017, .340]). The SP

algorithm significantly outperformed the SC algorithm on the Grades 1 dataset (95% CI:

[.331, .050]).

In Figure 4, the rightmost set of bars shows the performance of each algorithm after

aggregating across all five quiz datasets from Experiment 2. The SC algorithm appears

to outperform the SP algorithm, majority vote, and confidence-weighted algorithms by ap-

proximately 0.1 in MCC. Computing the paired mean difference in MCC between the SC

20Although we concentrate on the SP and SC algorithm, it is useful to briefly describe the properties of
these alternative mechanisms. Majority voting assigns an equal weight to all forecasters and is guaranteed
to leverage experts only in symmetric problems. The confidence-weighted algorithm assigns larger weights
to forecasters with more informative private signals in unbiased problems but not biased ones. It is only
guaranteed to predict the correct answer in large samples in unbiased forecasting problems and is sensitive
to specific overconfidence. Max confidence has the property that the prediction can switch from true to
false when the confidence report of one of the forecasters increases. Thus, it isn’t possible to represent the
algorithm as a weighted average of reports above and below a single posterior threshold. The algorithm is
also not guaranteed to leverage experts in any class of decision problems and is not guaranteed to correctly
predict the correct answer in large samples.
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Figure 6: Classification performance of algorithms measured by percentage accuracy on each
dataset from Experiment 1 and 2. Error bars show standard error.

algorithm and each other algorithm over the five quiz datasets, we find that the SC algo-

rithm had a significantly higher MCC than the SP algorithm (95% CI: [.022, .166]), majority

voting (95% CI: [.056, .204]) and the confidence-weighted algorithm (95% CI: [.011, .156]).21

The SC algorithm also has a higher MCC than the max confidence algorithm across all five

grade levels, but the difference is not significant (95% CI: [-.039, .120]).

The superior performance on the SC algorithm in hard problems makes sense in the

context of the weight functions. In hard problems, many forecasters will have posteriors that

are close to the uninformed posterior of 0.5. These forecasters will have large weights in the

SP algorithm and this is likely to crowd out the signal from the small number of experts

who are likely to exist when the problem is difficult. By contrast, in the SC algorithm,

uninformed forecasters will have a zero weight when the prior is unbiased while the small

number of expert forecasters in the crowd are likely to have large weights due to having

better information.

The relatively poor performance of the SC algorithm in the Grades 1 dataset suggests

21One caveat to this result is that the exclusion of individuals who were inconsistent appears to negatively
impact the performance of the SP algorithm more than the SC algorithm. When inconsistent forecasters are
included, the SC algorithm still generally outperforms the SP algorithm and the patterns described above
remain. However, the overall difference between the SC and SP algorithm is not statistically significant (95%
CI: [-.066, .075]).
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that the algorithm may not perform well in very easy problems where almost all participants

correctly predict the correct answer. We believe this is due to the way that the algorithm

handles biased priors. By construction, the SC algorithm eliminates common knowledge

from the algorithm by setting the weight of an individual who receives no private signal to

zero. If the common knowledge is indeed informative and there is little additional private

information, the algorithm may perform poorly. In contrast, the SP algorithm assigns large

weights to forecasters who have little private information, and therefore does not eliminate

forecasters with common information.

Although it is not the focus of this paper, our theoretical results show that both the SP

and SC algorithm are able to correct for bias in large samples and thus any hybrid algorithm

that selects between them based on a secondary criterion will also correctly predict the

correct answer. Our data suggests that the SC algorithm performs well on hard problems

while the SP algorithm does well on problems that are easy. In principle, an algorithm that

switches between these two algorithms based on task difficulty may do better than either

algorithm alone. For instance, across our states and quiz datasets, an algorithm that uses the

SC algorithm’s prediction when the average probability meta-prediction is between [0.3, 0.7]

and the SP algorithm’s prediction in other circumstances has a MCC of .72 in the quiz data,

which significantly outperforms both the SC algorithm (95% CI: [.003, .077]) and the SP

algorithm (95% CI: [.066, .200]). It also outperforms both the SP and SC algorithm in the

states data, but the difference is not statistically significant (95% CI: [-.057, .257] and [-.070,

.259], respectively).

4 Conclusion

Modern forecasting algorithms use the Wisdom of Crowds to produce forecasts better than

those of the best identifiable expert. However, these algorithms may be inaccurate when

crowds are systematically biased or when expertise varies substantially across forecasters.

Recent work by Prelec et al. (2017) has shown that meta-predictions—a forecast of the aver-

age forecast of others—can be used to correct for biases even when no external information

such as a forecasters past performance is available. Our paper explored how meta-predictions

can also be used to improve predictions by identifying and leveraging expertise in the crowd.

We began by outlining an alternative confidence-based version of the SP algorithm.

This algorithm retains the theoretical property that it will always predict the correct answers

in large samples even when forecasters have a biased prior. In contrast to the SP algorithm,

we showed that the SC algorithm weights individuals with more informative private signals

more than those with less informative private signals. The algorithm also leverages expertise
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and can mitigate biases in confidences that arise when individuals who believe the consensus

position is correct are overconfident and individuals who believe the consensus position is

incorrect are under-confident. Over two experiments, we find that the new SC algorithm

does a better job in weighting better-informed forecasters than the original algorithm and

show that individuals with higher mean accuracy contribute more to the algorithm than

other forecasters.

We also explored the properties of the SP and SC algorithm across a range of prob-

lems that varied in difficulty. Overall, the SC algorithm was more effective at leveraging

expertise than the SP algorithm. However, the efficacy of the weights did not translate into

improved performance at all levels of difficulty. On the easiest problems, the SC algorithm

was significantly worse than the SP algorithm, despite the SC algorithm leveraging expertise

more effectively. In contrast, the SC algorithm was generally more effective than the SP

algorithm on the moderate-to-hard problems. Thus, despite the theoretical advantages of

the SC algorithm, the empirical performance of these algorithms suggests they may be suited

to different types of problems, rather than being strictly better or worse than one another.

Overall, our theoretical and empirical findings provide useful insight into how these al-

gorithms can be used to leverage expertise in the single-question domain. The weights used

by the SC algorithm have useful properties relating to forecasters’ expertise, but impor-

tantly, the properties of these weights are not fundamentally tied to each algorithm. Thus,

the weights of the SC algorithm can be used independently, for example, for the purposes

of improving forecasts in the probabilistic domain (Martinie et al. 2020), or for other pur-

poses such as identifying high-performing individuals for the purposes of compensation or

evaluation.

There exist other algorithms that seek to identify expertise in the single question do-

main, such as those based on forecasters’ confidence (Koriat 2008) or decision similarity

(Kurvers et al. 2019). These other measures are most effective in ‘kind’ environments or

low-difficulty problems, where the majority of forecasters are likely to vote correctly (Koriat

2008, Kurvers et al. 2019). In contrast, our results suggest that the SC weights are better

suited for identifying expertise on moderate-to-high difficulty problems, where the majority

of forecasters may often be biased and vote incorrectly. Our results are therefore comple-

mentary to the existing literature in that they can be used to identify and leverage expertise

in different forecasting environments.

37



References

Baillon A, Tereick B, Wang TV (2020) Follow the money, not the majority: Incentivizing and aggre-

gating expert opinions with Bayesian markets, working paper, Erasmus School of Economics,

Rotterdam.

Blackwell D (1951) Comparison of experiments. Neyman J, ed., Proceedings of the Second Berkeley

Symposium on Mathematical Statistics and Probability, 93–102 (The Regents of the University

of California. Berkeley, California).

Blackwell D (1953) Equivalent comparisons of experiments. The Annals of Mathematical Statistics

265–272.

Blackwell D, Girshick MA (1979) Theory of games and statistical decisions (Courier Corporation.

Toronto, Ontario).

Budescu DV, Chen E (2015) Identifying expertise to extract the wisdom of crowds. Management

Science 61(2):267–280.

Clemen RT (1989) Combining forecasts: A review and annotated bibliography. International Jour-

nal of Forecasting 5(4):559–583.

Condorcet Md Marie Jean Antoine Nicolas de Caritat (1785) Essai sur l’application de l’analyse à
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Online Appendix A: The relationship between weights

and accuracy

In the main text, we provided Proposition 3 that showed that the expected weight of the SP

and SC algorithms were ordered. This implies that the means of the limiting distributions

are well ordered. We also noted that the variances of the two algorithms are not ordered. To

have a better sense of how the two algorithms are likely to perform in small and moderate

samples, we construct 100,000 randomly generated unbiased information services using the

following process. First, in each state, we draw five uniform [0, 1] variables, x1, . . . , x5, and

set Qoi = xi∑5
i=1 xi

. By construction, the elements of each row sum to one and there will be

both a state where QT i > QFi and a state where QT i < QFi. Thus, each information service

will be responsive.

We next generate 1000 samples of size 100 to calculate the mean (W) and variance

(V ar(W)) of the sample in both the case where the correct answer is true and the case

where the sample is false. We use samples of 100 to ensure that the variance generated in

re-weighting the observations in each algorithm is taken into account. We also chose this

sample size because it is the sample used in our experiments.

Over the 100, 000 samples, the average value of W
SC

is 0.741 and the average value of

W
SP

is 0.674 when the state is true. The average observation-level coefficient of variance,
100V ar(W)

W
, of the SC algorithm is 0.366 while the average observation-level coefficient variance

of the SP algorithm is 0.378. Both the difference in means and the difference in the coefficient

of variance are significantly different from zero, though the magnitude difference in the

coefficient of variances is very small (paired t-test of means: t(99999) = 376.0, p < .001;

paired t-test of coefficient of variance: t(99999) = 32.5, p < .001). The results for false

question are nearly identical (1−W
SC

= 0.740 and 1−W
SP

= 0.674 when the state is false;

coefficient of variances (using a mean of 1 −W as the denominator) are 0.366 and 0.378

respectively).

Based on the mean and the variance generated by the sample, we approximate the

sample size N necessary to ensure an accuracy of 97.5% by finding the point where the lower

bound of the confidence interval is equal to 0.5 for both the case where the answer is true

and false:
1

2
= W − 1.96

(100V ar(W))
1
2

N
1
2

. (3)

The maximum of these two N is the estimated sample size necessary to generate an accuracy

of 97.5% for both algorithms. Note that the choice of 97.5% is arbitrary. We chose this

threshold because the tail of 2.5% corresponds to the left tail of a two-sided 95% confidence
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interval. This allows us to use the common multiplier of 1.96 standard deviations when

calculating the N in equation (3) above.

Across the 100, 000 samples, the SC algorithm is predicted to require a smaller N in

99.1% of cases while the SP algorithm is predicted to have a smaller sample in only 6 cases.

Restricting attention to the 63,280 cases where at least one algorithm requires a sample size

of at least 30 and where the central limit theorem is likely to be a reasonable approximation,

the SC algorithm is predicted to require a smaller sample size in 99.7% of cases. These

results suggest that the SC algorithm is likely to be more efficient in the vast majority of

unbiased decision problems in cases where all forecasters are Bayesian.

Figure 7 plots the minimum number of individuals necessary to ensure that the SP and

SC algorithms generate the correct forecast 97.5% of the time for two information services

containing experts who know the correct state and uninformed novices. In both panels,

forecasters are drawn from a population where a proportion θ are experts and are fully

informed about the correct answer and 1 − θ are novices. In the left hand panel, novices

have no informative signal and both algorithms will be correct 50% of the time when θ = 0

for any N . In the right hand panel, each novice receives an independent signal that is

correct 55% of the time and incorrect 45% of the time. In both graphs, we concentrate on a

symmetric information service where s∅ = .5. The cutoffs reported are derived analytically

using the exact sample distribution or a normal approximation in cases where the Lindeberg-

Lévy Central Limit Theorem applies. We randomly pick a predicted state in cases where

either algorithm returns an indeterminate value.

As seen in the left hand panel, the SC algorithm requires a very small sample sizes to

accurately predict the correct answer when novices are fully uninformed. This is because

uniformed forecasters have zero weight in the algorithm and it only takes a single informed

forecaster to generate the correct answer. In the SP algorithm, by contrast, uninformed

individuals have a larger weight than the informed forecasters for any θ. Although the

expected contribution of each novice is zero, they nonetheless create substantial noise in the

algorithm that can lead to inaccurate predictions. As a result, the SP algorithm requires

a larger sample than the SC algorithm for any proportion of experts. The difference in

required sample sizes is particularly pronounced for cases where the proportion of experts is

small. For example, when only 10% of the population is an expert, the SC algorithm requires

a sample of 29 participants to ensure an accuracy of 97.5% while the SP algorithm requires

a sample of 462.

The right hand panel shows that the SP algorithm continues to require larger sample

sizes even when the novices are partially informed and that the SC algorithm requires a

smaller sample for any proportion of experts. This graph shows that the difference in sample
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Case 2:  Experts are Fully Informed and Novices Receive a 
Symmetric Signal with Posteriors of .45 and .55
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Case 1:  Experts are Fully Informed and Novices Receive 
Uninformative Signals

SP Algorithm

SC Algorithm

SP Algorithm

SC Algorithm

Proportion of Experts in the Population Proportion of Experts in the Population

The left panel shows the sample size necessary to achieve 97.5% accuracy with the SP and SC algorithm from a population consisting of 
experts who are fully informed and novices who are uninformed.  The Right panel shows the sample sizes necessary to achieve 97.5% 

accuracy with the SP and SC algorithms when novices receive a symmetric signal with posteriors with posteriors of .55 and .45.  In both cases, 
the prior is assumed to be 0.5.Figure 7: The left panel shows the sample size necessary to achieve 97.5% accuracy with the

SP and SC algorithm from a population consisting of fully informed experts and uninformed
novices. The right panel shows the sample sizes necessary to achieve 97.5% accuracy with
the SP and SC algorithms when novices receive a symmetric signal that generate posteriors
of 0.55 and 0.45.

sizes seen in the left hand panel is not due to the assumption that novice forecasters were

fully uninformed.

Online Appendix B: Expertise and the SP algorithm

In this appendix, we explore how the SP algorithm treats experts. In part 1 we provide

counter examples that show that the SP algorithm does not always leverage experts in a

variety of information services. We then provide two additional conditions on the informa-

tion service that are sufficient to ensure that the algorithm leverages experts in symmetric

information services. Finally, we provide an example that highlights some of the intuition

that underlines the proof and discuss the cases where we expect the SP algorithm to perform

best when forecasters are heterogeneous in their expertise.

Part 1: Counter Examples

Examples 1 and 2 below show that in cases where the prior or the posteriors are

asymmetric, it is possible to find counter examples where the expected total contribution of

experts in the SP algorithm is less than that of novices in at least one state.

Example 1 Consider an environment where θ = .5, the prior s∅ = .8 and where the set of

additional posteriors are {0, .4, .6, 1}. Suppose further that the experts’ information service
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over {0, .4, .6, .8, 1} is

QE =

[
0 0 0 0 1

1 0 0 0 0

]
and the Novices’ information service is

QN =

[
0 0 .375 0 .625

0 0 1 0 0

]
.

Note that the Novices will always vote for True regardless of the state because their posteriors

are always greater or equal to .6. Thus, this is a group that is biased and information will

only influence their meta-predictions.

We now show that the expected total contribution of expert is not greater than the

expected total contribution of the novices in the true state. For the experts,

EV (QE|T )− EMV (θ|QE, T ) = 1− (.5 ∗ 1 + .5 ∗ 1) = 0,

while for the Novices

EV (QN |T )− EMV (θ|QN , T ) = 1− (.5 ∗ .85 + .5 ∗ 1) = .075.

Example 1 shows that when the prior is biased, the expected contribution of an expert

may be smaller than that of the novice for at least one of the states. The following example

shows that even when the prior is unbiased, it is still possible to construct information

services where the expected total contribution of an expert is less than that of a novice.

Example 2 Consider an environment where θ = .5, the prior s∅ = .5 and where the set of

additional signal realizations are { x
x+1

, 1} with x ∈ [0, 1). Suppose further that the experts’

information service over { x
x+1

, .5, 1} is

QE =

[
x 0 1− x
1 0 0

]

and the Novices’ information service over { x
x+1

, .5, 1} is

QN =

[
0 1 0

0 1 0

]

We now show that the expected total contribution of an expert may be lower than the expected
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total contribution of a novice and that it can be negative for x close to 1. For the experts,

EV (QE|T ) = 1− x

and

EMV (θ|QE, T ) = .5MV (QE|QE, T ) + .5MV (QN |QE, T ) =
1− x

2(1 + x)
+ .25

In the limit, as x→ 1

lim
x→1

[EV (QE|T )− EMV (θ|QE, T )] = 0− .52 = −.25.

This is strictly below limx→1[EV (QN |T )− EMV (θ|QN , T )] = .25.

Part 2: Sufficient Conditions

We now discuss two additional properties of the information services that are sufficient

to ensure that the SP algorithm leverages expertise in symmetric information services.

Strict Garbling: When information service QE is more informative than QN , we can find a

garbling matrix Z such that each signal in QN can be found by adding noise to the signals

in QE. To guarantee that the SP algorithm leverages expertise, we will require a stronger

condition. Rather than using any set of signals from QE, we will require that QN can be

constructed by garbling only signals in QE that are at least as informative as the signal being

constructed in QN . Let ŝ ∈ [0, 0.5] be an arbitrary posterior between 0 and 0.5. Further, let

F t(ŝ) :=
∑
{i|si≤ŝ}

[Qt
T i +Qt

T (m+2−i)]

to be the probability of having a posterior that is less than or equal to an arbitrary posterior

ŝ or greater than or equal to 1− ŝ when receiving signals from information service t ∈ {E,N}
in state T . Note that in a symmetric information service,∑

{i|si≤ŝ}

[Qt
T i +Qt

T (m+2−i)] =
∑
{i|si≤ŝ}

[Qt
F i +Qt

F (m+2−i)]

and thus, under symmetry, F t(ŝ) is invariant to the state chosen to evaluate it.

Definition 7 QN is a strict garbling of QE if (i) both QN and QE are symmetric, (ii)

FN(ŝ) ≤ FE(ŝ) for all ŝ < 0.5 and (iii) exists at least one ŝ for which FN(ŝ) < FE(ŝ).
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Problem Difficulty: Forecasting problems are the most difficult when forecasters receive

weak signals about the true state and where the vote shares are close to 50:50. We define a

forecasting problem as hard if at least a quarter of the population will answer the question

incorrectly:

Definition 8 A forecasting problem is hard if less than 75% of forecasters vote “true” in

the true state and greater than 25% of forecasters vote “true” in the false state.

The following result provides a set of sufficient conditions that ensure that the SP

algorithm leverages expertise in environments where Assumptions 1-3 hold and where there

are exactly two information services:22

Proposition 6 The SP algorithm leverages expertise if information services QN and QE

are symmetric, QN is a strict garbling of QE, and the forecasting problem is hard.

Although the proof of proposition 6 is technical, it is again related to the slope and

level of the vote meta-prediction function. We demonstrate this here with a simple example.

Consider a decision problem where the prior s∅ = .5 and where the set of addi-

tional posteriors are {0, .4, .6, 1}. Suppose further that the experts’ information service over

{0, .4, .5, .6, 1} is

QE =

[
0 0 0 0 1

1 0 0 0 0

]
and the Novices’ information service over {0, .4, .5, .6, 1} is

QN =

[
0 .4 0 .6 0

0 .6 0 .4 0

]

In this problem, experts know the correct state, while novices have weak but correctly

informative signals. We study how the expected total contributions of novices and experts

change with θ.

Since QN and QE are symmetric, we will restrict attention to the true state. First,

22We note that unlike the proof for the SC algorithm, Proposition 6 does not necessarily generalize to
cases where there are more than two information services.
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note that

MV (θ|sk) = θMV (QE|sk) + (1− θ)MV (QN |sk)

= θsk + (1− θ)[.6sk + .4(1− sk)].

For an expert, E[V (QE|T )] = 1, and E[MV (θ|QE, T )] = MV (θ|sk = 1) ∗ 1 = θ + .6(1 − θ).
Thus

E[V (QE|T )]− E[MV (θ|QE, T )] = .4− .4θ. (4)

For the novice, E[V (QN |T )] = .6, MV (θ|sk = .4) = .4θ + (1 − θ)[.6 ∗ .4 + .4 ∗ .6], and

MV (θ|sk = .6) = .6θ + (1− θ)[.62 + .42]. Thus

E[MV (θ|QN , T )] = .4MV (θ|sk = .4) + .6MV (θ|sk = .6)

= .4[.4θ + .48(1− θ)] + .6[.6θ + .52(1− θ)]

= .52θ + .504(1− θ).

It follows that

EV (QN |T )− EMV (θ|QN , T ) = .6− [.52θ + .504(1− θ)] = .096− .016θ. (5)

Using equations (4) and (5) above, the total contributions of an expert exceeds that of a

novice when .4− .4θ > .096− .016θ or, equivalently, when θ < 19
24

.

Figure 8 plots the meta-prediction line MV (θ|sk) and the vote function for θ = 0.1 and

θ = 0.9. As seen on the left hand side, when θ = 0.1, the meta-prediction line is relatively

flat and the weight given to the expert is similar to that of the novices. Because the votes of

the novices tend to cancel out while all experts perfectly predict the correct state, experts

are leveraged in the decision problem.

By contrast, when θ = 0.9, the slope of the meta-prediction line is close to one and

the weights of individuals with high-quality signals grow small. Thus, although some of the

forecasts of the novices partially cancel out, the expected contribution of the experts falls

below that of the novices.23

Within the class of symmetric problems, the SP algorithm is likely to perform best

when the total weight given to experts in the algorithm is largest. Our simple example

shows that when there are too many experts who know the correct state, the weights given

to each individual expert may grow small. Thus, our analysis suggests that the SP algorithm

23Note that when θ = .9, 96% of forecasters will vote for the right answer and the problem is not classified
as hard. Thus, our sufficient conditions do not cover this case.
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Figure 8: The left panel shows the vote function and vote meta-prediction over all possible
posteriors for the case where 10% of the population are experts and 90% are novices. The
right panel shows the vote function and vote meta-prediction over all posteriors for the case
where 90% of the population are experts and 10% are novices. Weights are equal to the
absolute distance between the two functions.

is likely to do best in cases where there are an intermediate number of experts. This is the

case with the example above, where the difference between the total expected contribution

of all experts, θ
[
E[V (QE|T )]− E[MV (θ|QE, T )]

]
, and the total expected contribution of all

novices, (1− θ)
[
E[V (QN |T )]− E[MV (θ|QN , T )]

]
, is largest at θ ≈ .616.

Online Appendix C: Proofs

In this appendix we provide proofs for all the lemmas and propositions in the paper. We

provide the proofs to Lemmas (1) – (4) first before presenting the proofs for Propositions

(1) – (6).

Lemmas (1) – (4)

Proof. Proof of Lemma 1: In this proof, we show that the Surprisingly Popular (SP)

algorithm of PSM can be rearranged such that each forecaster’s vote is weighted by the

normalized, absolute difference between their vote and meta-prediction. We begin with the

original form of the SP algorithm and rearrange it to show that it is identical to a weighted

form, where the weights are given by the absolute difference between their vote and their

meta-prediction, normalized by the sum of this difference over all forecasters:
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TSP (X) =


1 if

N∑
i=1

|Vi −MV
i |Vi∑N

j=1 |Vj −MV
j |

> 0.5

0 otherwise.

In the original SP algorithm, the proportion of the crowd voting for that outcome is compared

to the mean meta-prediction, and the most under-predicted outcome is then predicted to be

correct. Formally,

TSP (X) =


1 if

N∑
i=1

(Vi −MV
i ) > 0

0 otherwise.

The crowd for an event with N forecasters can be decomposed into T forecasters who vote

true and F forecasters who vote false, N = T + F . The report of each forecaster who votes

true t ∈ {0, . . . , T}, is given by Xt := (Vt, Pt,M
V
t ,M

P
t ), and the report of each forecaster

who votes false, f ∈ {0, . . . , F}, is given by Xf := (Vf , Pf ,M
V
f ,M

P
f ). The SP equation can

therefore be decomposed into

TSP (X) =


1 if

T∑
t=1

(Vt −MV
t ) +

F∑
f=1

(Vf −MV
f ) > 0

0 otherwise.

Rearranging this, we get

TSP (X) =


1 if

T∑
t=1

(Vt −MV
t ) > −

F∑
f=1

(Vf −MV
f )

0 otherwise.

As Vf = 0, Vt = 1, and MV
i ∈ [0, 1] the difference between votes and vote meta-predictions

for any individual who votes false will always be equal to or less than 0,

Vf −MV
f ≤ 0,

and the difference between votes and vote meta-predictions for any individual who votes true

will always equal or exceed 0,

Vt −MV
t ≥ 0.

The SP equation is therefore equivalent to
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TSP (X) =


1 if

T∑
t=1

|Vt −MV
t | >

F∑
f=1

|Vf −MV
f |

0 otherwise.

Adding the terms on the left to both sides, we obtain

TSP (X) =


1 if

T∑
t=1

2|Vt −MV
t | >

T∑
t=1

|Vt −MV
t |+

F∑
f=1

|Vf −MV
f |

0 otherwise.

Since

T∑
t=1

|Vt −MV
t |+

F∑
f=1

|Vf −MV
f | =

N∑
j=1

|Vj −MV
j |,

we can collect the terms on the right:

TSP (X) =


1 if

T∑
t=1

2|Vt −MV
t | >

N∑
j=1

|Vj −MV
j |

0 otherwise.

After dividing both sides by the RHS term and dividing both sides by 2, we obtain

TSP (X) =

1 if
∑T

t=1 |Vt−MV
t |∑N

j=1 |Vj−MV
j |
> 0.5

0 otherwise.

which is identical to

TSP (X) =


1 if

T∑
t=1

|Vt −MV
t |∑N

j=1 |Vj −MV
j |

> 0.5

0 otherwise.

Since Vt = 1, we can multiply both sides by Vt and simplify the terms on the right to obtain

TSP (X) =


1 if

T∑
t=1

|Vt −MV
t |Vt∑N

j=1 |Vj −MV
j |

> 0.5

0 otherwise.

As Vf = 0,
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F∑
f=1

|Vf −MV
f |Vf∑N

j=1 |Vf −MV
f |

= 0,

and we can add this summation term to both sides of the previous equation and simplify

the terms on the right to obtain

TSP (X) =


1 if

T∑
t=1

|Vt −MV
t |Vt∑N

j=1 |Vj −MV
j |

+
F∑
f=1

|Vf −MV
f |Vf∑N

j=1 |Vj −MV
j |

> 0.5

0 otherwise.

Collecting the terms on the left, we obtain the weighted version of the SP algorithm, thus

proving Lemma 1,

TSP (X) =


1 if

N∑
i=1

|Vi −MV
i |Vi∑N

j=1 |Vj −MV
j |

> 0.5

0 otherwise.

Proof. Proof of Lemma 2: For MLRP to be satisfied, we need to show that for any set

of signals that can be drawn with si > sj and sk > sl,

p(si|sk)p(sj|sl) > p(sj|sk)p(si|sl) (6)

Note that a signal can only be drawn if it occurs with positive probability in its information

service. Thus p(si) > 0, p(sj) > 0, p(sk) > 0, and p(sl) > 0.

Assumption 2 implies that

p(sa|sb) =
p(sa, sb)

p(sb)
=
p(sa|T )p(sb|T )p(T ) + p(sa|F )p(sb|F )p(F )

p(sb)
.

For a ∈ {i, j} and b ∈ {k, l}. Rearranging Bayes Rule, it is the case that:

p(T )p(sb|T )

p(sb)
= p(T |sb) = sb

and thus

p(sa|sb) = p(sa|T )sb + p(sa|F )(1− sb) = Qt
Tasb +Qt

Fa(1− sb). (7)

We first prove that MLRP holds for the case where si > sj > 0 and sk > sl > 0. By the
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construction of the Q matrix

sa =
Qt
Tap(T )

Qt
Tap(T ) +Qt

Fa(1− p(T ))
.

Under the assumption that sj > 0 and sl > 0, this can be rewritten as

Qt
Fa =

1− sa
sa

p(T )

1− p(T )
Qt
Ta =

1− sa
sa

s∅
1− s∅

Qt
Ta

for a ∈ {i, j}. Substituting this into (7) implies that

p(sa|sb) = Qt
Tasb

[
1 +

1− sa
sa

1− sb
sb

s∅
1− s∅

]
. (8)

Let rab = 1−sa
sa

1−sb
sb

s∅
1−s∅ for a ∈ {i, j} and b ∈ {k, l}. Substituting (8) into (6), MLRP

is satisfied if:

(1 + rik)(1 + rjl) > (1 + ril)(1 + rjk)

Expanding this equation, MLRP is satisfied if:

1 + rik + rjl + rikrjl > 1 + ril + rjk + rilrjk

Next, noting that rikrjl = rilrjk, MLRP is satisfied if

rik + rjl > ril + rjk.

Rearranging this equation, MLRP is satisfied if[
1− si
si
− 1− sj

sj

][
1− sk
sk

− 1− sl
sl

]
> 0.

By the assumption that si > sj and sk > sl, both terms on the LHS are negative and thus

this equation always holds.

We now check the cases for which (i) sj = 0 but sl > 0, (ii) sj > 0 but sl = 0, and

(iii) both sj = 0 and sl = 0. When sj = 0 but sl > 0, p(sj|sb) = Qt
F j(1− sb) and MLRP is

satisfied if

[Qt
T isk(1 + rik)][Q

t
F j(1− sl)] > [Qt

T isl(1 + ril)][Q
t
F j(1− sk)].

When sk = 1, the RHS is zero and the LHS is strictly positive. Thus MLRP holds. When
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sk < 1, the equation is equivalent to

sk
1− sk

>
sl

1− sl
,

which is satisfied due to the assumption that sk > sl.

When sl = 0 and sj > 0, MLRP holds if

Qt
T isk +Qt

F i(1− sk)
Qt
T jsk +Qt

F j(1− sk)
>
Qt
F i

Qt
F j

. (9)

If si = 1, the RHS is equal to zero and the LHS is strictly positive. Thus MLRP holds.

When si < 1, sj > 0, and sl = 0, Qt
T i = si

1−si
1−s∅
s∅

Qt
F i and, after some algebra, the equation

is equivalent to
si

1− si
>

sj
1− sj

,

which is always satisfied. Thus MLRP holds in this case.

Finally when sl = 0 and sj = 0, MLRP holds if

[Qt
T isk +Qt

F i(1− sk)]Qt
F j > [Qt

F j(1− sk)]Qt
F i.

Rearranging, MLRP holds if Qt
T iskQ

t
F j > 0, which is always true.

Proof. Proof of Lemma 3: Assume that the event is true. The share of true votes from

information service t ∈ {E,N} (given that the state is true) is given by

EV (Qt|T ) =
∑
{i|si≥.5}

γ(Qt
T i),

where γ(Qt
oi) = 1

2
Qt
oi if si = .5 and γ(Qt

oi) = Qt
oi otherwise. The meta-prediction of an

individual in group t with signal sk is

MV (Qt|sk) = skEV (Qt|T ) + (1− sk)EV (Qt|F ).

The expected meta-prediction of forecasters in information service Qt made by forecasters

with information service Qτ (τ = {N,E}) when the state is o is given by

EMV (Qt|Qτ , o) =
∑
k

MV (Qt|sk)Qτ
ok.

Aggregating up across novices and experts, the expected meta-prediction of votes from in-
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formation service Qt given state o is

EMV (Qt|o) = θEMV (Qt|QE, o) + (1− θ)EMV (Qt|QN , o).

In the true state, the meta-prediction will underestimate (or be equal to) the true proportion

of votes for the true state if for all t ∈ {E,N},

EV (Qt|T ) ≥ EMV (Qt|T ). (10)

We allow for equality here to account for the cases where (i) all individuals know the state

is true or (ii) all individuals are uninformed with a prior of s∅ = .5. In these special cases

the expected votes and expected meta predictions will be equal.

Noting that EV (Qt|T ) = θEV (Qt|T ) + (1 − θ)EV (Qt|T ), equation (10) holds if for

t ∈ {E,N} and τ ∈ {E,N},

EV (Qt|T ) ≥ EMV (Qt|Qτ , T )

Next, noting that (i)

EMV (Qt|Qτ , T ) =
∑
k

MV (Qt|sk)Qτ
Tk,

(ii) MV (Qt|sk) = skEV (Qt|T ) + (1 − sk)EV (Qt|F ), and (iii)
∑

kQ
τ
Tk = 1, equation (10)

holds if ∑
k

(1− sk)[EV (Qt|T )− EV (Qt|F )]Qτ
Tk ≥ 0.

This will be satisfied if EV (Qt|T )− EV (Qt|F ) ≥ 0 for all t. This is equivalent to requiring

that ∑
{i|si≥.5}

[γ(Qt
T i)− γ(Qt

F i)] ≥ 0. (11)

Noting that an information service is a stochastic matrix and that the rows add up to one,

(11) is satisfied if ∑
{i|si≤.5}

[γ(Qt
F i)− γ(Qt

T i)] ≥ 0. (12)

Define the cumulative density function of p(ŝ|sb) as

G(ŝ|sb) =
∑

{a|sa≤ŝ}

p(sa|sb),
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where ŝ ∈ {s1, . . . , sm} ∪ {s∅}. By lemma 1, MLRP holds. This implies that

p(ŝ|sk)p(sj|sl) > p(sj|sk)p(ŝ|sl)

for all sj < ŝ. Noting that p(ŝ|sk)p(sj|sl) = p(sj|sk)p(ŝ|sl) when sj = ŝ,

p(ŝ|sk)p(sj|sl) ≥ p(sj|sk)p(ŝ|sl)

for all sj ≤ ŝ. Summing both sides of this equation from s0 to ŝ with respect to sj, MLRP

implies
p(ŝ|sk)
p(ŝ|sl)

≥ G(ŝ|sk)
G(ŝ|sl)

for all ŝ. MLRP also implies that

p(si|sk)p(ŝ|sl) ≥ p(ŝ|sk)p(si|sl)

for all si ≥ ŝ. Summing both sides of this equation over all si > ŝ, MLRP implies

1−G(ŝ|sk)
1−G(ŝ|sl)

≥ p(ŝ|sk)
p(ŝ|sl)

.

Combining these two equations we have

1−G(ŝ|sk)
1−G(ŝ|sl)

≥ G(ŝ|sk)
G(ŝ|sl)

or
G(ŝ|sl)

1−G(ŝ|sl)
≥ G(ŝ|sk)

1−G(ŝ|sk)
,

which implies G(ŝ|sl) ≥ G(ŝ|sk) for any ŝ and for signals sl < sk.

When sl = 0, G(ŝ|0) =
∑
{i|si≤ŝ}QFi. Further, when sk = 1, G(ŝ|1) =

∑
{i|si≤ŝ}QT i.

Thus MLRP implies ∑
{i|si≤ŝ}

Qt
T i ≤

∑
{i|si≤ŝ}

Qt
F i

and thus equation (12) holds. The proof for the case where the event is false uses the same

logic as the case where the state is true. In this case

EMV (Qt|Qτ , F ) =
∑
k

MV (Qt|sk)Qτ
Fk,
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and expanding MV (Qt|sk) = skEV (Qt|T ) + (1− sk)EV (Qt|F ),

EMV (Qt|Qτ , F )− EV (Qt|F ) =
∑
k

[sk(EV (Qt|T )− EV (Qt|F ))]Qτ
Fk.

This is greater or equal to zero if EV (Qt|T )−EV (Qt|F ) ≥ 0 for all Qt. We have shown this

to be true by MLRP above.

Proof. Proof of Lemma 4: Assume that the event is true. The expected probability

prediction of forecasters from information service t ∈ {E,N} in state o ∈ {T, F} is given by

EP (Qt|o) =
∑
si

siQ
t
oi.

The meta-prediction of an individual in group t with signal sk is

MP (Qt|sk) = skEP (Qt|T ) + (1− sk)EP (Qt|F ).

The expected meta-prediction of forecasters in information service Qt made by forecasters

with information service Qτ (τ ∈ {N,E}) when the state is o is given by

EMP (Qt|Qτ , o) =
∑
k

MP (Qt|sk)Qτ
ok.

Aggregating up across novices and experts, the expected probability meta-prediction from

information service Qt given state o is

EMP (Qt|o) = θEMP (Qt|QE, o) + (1− θ)EMP (Qt|QN , o).

In the true state, the probability meta-prediction will underestimate the true probability

average if for all t ∈ {E,N},

EP (Qt|T ) ≥ EMP (Qt|T ). (13)

We again allow for equality here to account for cases where (i) all individuals know the state

is true or (ii) all individuals receive s∅. In these special cases the probability meta-prediction

will be equal to the average probability.

Noting that EP (Qt|T ) = θEP (Qt|T ) + (1 − θ)EP (Qt|T ), equation (13) holds if for
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t ∈ {E,N} and τ ∈ {E,N},

EP (Qt|T ) ≥ EMP (Qt|Qτ , T ).

Next, recalling that (i)

EMP (Qt|Qτ , o) =
∑
k

MP (Qt|sk)Qτ
ok,

(ii) MP (Qt|sk) = skEP (Qt|T ) + (1 − sk)EP (Qt|F ), and (iii)
∑

kQ
t
Tk = 1, equation (13)

holds if ∑
k

(1− sk)[EP (Qt|T )− EP (Qt|F )] ≥ 0.

This will be satisfied if EP (Qt|T )− EP (Qt|F ) ≥ 0 for all t.

Using the notation from Lemma 3, letG(ŝ|0) =
∑
{i|si≤ŝ}Q

t
F i andG(ŝ|1) =

∑
{i|si≤ŝ}Q

t
T i

and recall that MLRP implies that for any ŝ

G(ŝ|0) ≤ G(ŝ|1).

Thus G(ŝ|1) First-order stochastic dominates G(ŝ|0). An equivalent definition of stochastic

dominance is that for any increasing function u(ŝ),∑
i

u(si)QT i ≥
∑
i

u(si)QFi

Using u(ŝ) = ŝ, this immediately implies that∑
i

si[QT i −QFi] ≥ 0,

which is equivalent to EP (Qt|T )− EP (Qt|F )] ≥ 0. The proof for the case where the event

is false uses the same logic as the case where the state is true. In this case we want to prove

that EP (Qt|F ) ≤ EMP (Qt|Qτ , F ). By definition,

EMP (Qt|Qτ , F ) =
∑
k

MP (Qt|sk)Qτ
Fk.

Expanding outMP (Qt|sk)Qτ
Fk and using the same steps as above, EP (Qt|F ) ≤ EMP (Qt|Qτ , F )

if ∑
k

(1− sk)[EP (Qt|F )− EP (Qt|T )] ≤ 0.
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We have shown by MLRP that EP (Qt|F ) ≤ EP (Qt|T ) and thus the condition holds for all

k.

Propositions (1) – (6)

Proof. Proof of Proposition 1: In this proof, we show that in the SP algorithm, if (i)

forecaster i is better-informed than forecaster j and (ii) the prior is unbiased, then the weight

given to forecaster i will be strictly less than the weight given to forecaster j.

To begin, note that the when conditions (i) and (ii) hold above, either σi < σj < 0.5 or

σi > σj > 0.5. Thus Vi = Vj. Without loss of generality, we concentrate on the case where

σi > σj > 0.5 so that Vi = Vj = 1.

We are interested in the sign of W SP
i (σi) − W SP

j (σj). If the sign is positive, then

weights are increasing in signal and if it is negative, then weights will be decreasing in signal.

Noting that the denominators of W SP
i (σi) and W SP

j (σj) are positive and identical, the sign of

W SP
i (σi)−W SP

j (σj) will be the same as the sign of |V (σi)−MV (Q|σi)|−|V (σj)−MV (Q|σj)|.
As noted in the main text

MV (Q|σk) = σkEV (Q|T ) + (1− σk)EV (Q|F ).

Thus, in the case where σi > σj > 0.5,

|V (σi)−MV (Q|σi)| = 1− σiEV (Q|T )− (1− σi)EV (Q|F )

and thus

|V (σi)−MV (Q|σi)| − |V (σj)−MV (Q|σj)| = [σj − σi]EV (Q|T ) + [(1− σj)− (1− σi)]EV (Q|F )

= [σj − σi][EV (Q|T )− EV (Q|F )].

As shown in the proof of Lemma 3, EV (Q|T ) > EV (Q|F ). Thus, since σi > σj, the sign of

|V (σi)−MV (Q|σi)| − |V (σi)−MV (Q|σi)| is negative. Thus, the weights given to forecaster

i will be strictly less than the weight given to forecaster j.

Proof. Proof of Proposition 2: In this proof, we show that in the SC algorithm, if (i)

forecaster i is better-informed than forecaster j, the weight given to i will be strictly more

than the weight given to forecaster j.

Consider the case where σi > σj > s∅ We are interested in the sign of W SC
i (σi) −

W SC
j (σj). If the sign is positive, then weights are increasing in signal and if it is negative,
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then weights will be decreasing in signal. Noting that the denominators of W SP
i (σi) and

W SP
j (σj) are positive and identical, the sign of W SP

i (σi)−W SP
j (σj) will be the same as the

sign of |P (σi)−MP (Q|σi)| − |P (σj)−MP (Q|σj)|.
As noted in the main text

MP (Q|σk) = σkEP (Q|T ) + (1− σk)EP (Q|F )

Thus, in the case where σi > σj > 0.5,

|P (σi)−MP (Q|σi)| = σi − σiEP (Q|T )− (1− σi)EP (Q|F )

and thus

|P (σi)−MP (Q|σi)| − |P (σj)−MP (Q|σj)| = [σi − σj]− [σi − σj]EP (Q|T ) + [σi − σj]EP (Q|F )

= [σi − σj][1− (EP (Q|T )− EP (Q|F ))].

As shown in the proof of Lemma 4, 0 ≤ EP (Q|F ) < EP (Q|T ) ≤ 1 . Thus, [1− (EP (Q|T )−
EP (Q|F ))] is positive. Since, σi > σj, the sign of |P (σi)−MP (Q|σi)| − |P (σi)−MP (Q|σi)|
is positive. As a consequence, the weights given to forecaster i will be strictly greater than

the weight given to forecaster j.

Proof. Proof of Proposition 3: Define the absolute value of the expected contribution

of a forecaster who receives signal si in the SP algorithm as:

|CSP (Q|si)| =


| −MV

i (si)| if si < 0.5,
1
2
| −MV

i (si)|+ 1
2
|1−MV

i (si)| if si = 0.5,

|1−MV
i (si)| if si > 0.5.

Summing up over forecasters, let 1
N

∑N
i I{σi=si} be the proportion of forecasters that

receives signal si. Then, Borel’s law of large numbers implies that with probability one,

1

N

N∑
i

I{σi=sj} → Qoj as N →∞

for o ∈ {T, F} and for all sj. Since each forecaster receives an independent signal, this result
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implies that

lim
N→∞

1

N

N∑
i

|Vi −MV
i | = lim

N→∞

1

N

∑
sj

( N∑
i

|Vi −MV
i |I{σi=sj}

)
=
∑
sj

|CSP (Q|sj)|Qoj

and

lim
N→∞

1

N

N∑
i

|Vi −MV
i |Vi =

∑
{sj |sj≥0.5}

|1−MV (Q|sj)|γ(Qoj)

Combining these two results,

lim
N→∞

N∑
i

W SP
i Vi = lim

N→∞

1
N

∑N
i |Vi −MV

i |Vi
1
N

∑N
i |Vi −MV

i |
=

∑
{sj |sj≥0.5} |1−M

V (Q|sj)|γ(Qoj)∑
sj
|CSP (Q|sj)|Qoj

. (14)

Likewise, in the SC algorithm,

lim
N→∞

1

N

N∑
i

|Pi −MP
i | =

∑
sj

|sj −MP (sj)|Qoj

and

lim
N→∞

1

N

N∑
i

|Pi −MP
i |I{Pi>MP

i } =
∑

{sj |sj≥s∅}

|sj −MP (sj)|Qoj.

Combining these results,

lim
N→∞

N∑
i

W SC
i I{Pi>MP

i } = lim
N→∞

1
N

∑N
i |Pi −MP

i |I{Pi>MP
i }

1
N

∑N
i |Pi −MP

i |
=

∑
{sj |sj≥s∅} |sj −M

P (sj)|Qoj∑
sj
|sj −MP (sj)|Qoj

.

(15)

Equations (14) and (15) imply that

lim
N→∞

N∑
i

W SC
i I{Pi>MP

i } ≥ lim
N→∞

N∑
i

W SP
i Vi

if and only if∑
{sj |sj≥s∅} |sj −M

P (sj)|Qoj∑
sj
|sj −MP (sj)|Qoj

≥
∑
{sj |sj≥0.5} |1−M

V (Q|sj)|γ(Qoj)∑
sj
|CSP (Q|sj)|Qoj

(16)

for o ∈ {T, F}. We will prove this relationship holds in the true state when the problem is

unbiased and s∅ = 0.5. The case for the false state is identical and is omitted.

60



Starting with the left hand side of equation (16),∑
{sj |sj≥0.5}

|sj −MP (sj)|QTj =
∑

{sj |sj≥0.5}

|sj − sjE(P |T )− (1− sj)E(P |F )|QTj

By the law of total probability E(P ) = 0.5E(P |T ) + 0.5E(P |F ). Noting that E(P ) = 0.5 in

the unbiased case, this implies E(P |F ) = 1− E(P |T ). Thus:∑
{sj |sj≥0.5}

|sj −MP (sj)|QTj =
∑

{sj |sj≥0.5}

|2sj − 1|[1− E(P |T )]QTj.

Likewise, ∑
sj

|sj −MP (sj)|QTj =
∑
sj

|2sj − 1|[1− E(P |T )]QTj.

Thus, the left hand side of equation (16) in the true state with an unbiased prior is equal to:∑
{sj |sj≥0.5} |2sj − 1|QTj∑

sj
|2sj − 1|QTj

. (17)

We can also simplify the right hand side of (16). By the law of total probability,

E(V ) = .5E(V |T ) + .5E(V |F ), and thus E(V |F ) = 2E(V )− E(V |T ). Thus, for sj ≥ 0.5:

|1−MV (Q|sj)| = 1− sjE(V |T )− (1− sj)[2E(V )− E(V |T )]

= 1− E(V )− (2sj − 1)[E(V |T )− E(V )]

= 1− E(V )− |2sj − 1|[E(V |T )− E(V )].

Likewise, for sj < 0.5 :

| −MV (Q|sj)| = | − sjE(V |T )− (1− sj)[2E(V )− E(V |T )]|

= | − E(V ) + (1− 2sj)[E(V |T )− E(V )]|

= E(V )− |2sj − 1|[E(V |T )− E(V )].

Finally, if sj = 0.5, then

|CSP (Q|sj)| =
1

2
[1− E(V )] +

1

2
E(V ).

Noting that when sj = 0.5, 1
2
[1−E(V )]QT i = [1−E(V )]γ(QT i) and 1

2
[E(V )]QT i = [E(V )]γ(QT i),
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the right hand side of (16) can be rewritten as∑
{sj |sj≥.5}[1− E(V )]γ(QTj)−

∑
{sj |sj≥.5} |2sj − 1|[E(V |T )− E(V )]γ(QTj)∑

{sj |sj≤.5}[E(V )]γ(QTj) +
∑
{sj |sj≥.5}[1− E(V )]γ(QTj) +

∑
sj 6=0.5 |2sj − 1|[E(V |T )− E(V )]QTj

.

This is equivalent to∑
{sj |sj≥.5}[1− E(V )]γ(QTj)−

∑
{sj |sj≥.5} |2sj − 1|[E(V |T )− E(V )]QTj∑

{sj |sj≤.5}[E(V )]γ(QTj) +
∑
{sj |sj≥.5}[1− E(V )]γ(QTj) +

∑
sj
|2sj − 1|[E(V |T )− E(V )]QTj

(18)

since |2sj − 1| = 0 for sj = 0.5 and γ(QTj) = QTj for sj 6= 0.5.

Noting that
∑
{sj |sj≥.5}[1−E(V )]γ(QT i) = [1−E(V )]E(V |T ), and

∑
{sj |sj≤.5}[E(V )]γ(QT i) =

E(V )[1− E(V |T )], equation (18) can be rewritten as:

E(V |T )[1−E(V )]
E(V |T )−E(V )]

−
∑
{sj |sj≥.5} |2sj − 1|QTj

[1−E(V |T )]E(V )+E(V |T )[1−E(V )]
E(V |T )−E(V )

−
∑

sj
|2sj − 1|QTj

. (19)

Cross multiplication shows that for any values of x, y, a, and b with x > b > 0 and

y > a > 0,
a

b
≥ x− a
y − b

if and only if
a

b
≥ x

y

Thus, to show that equation (17) is greater than equation (19), it is sufficient to show that∑
{sj |sj≥0.5} |2sj − 1|QTj∑

sj
|2sj − 1|QTj

≥ E(V |T )[1− E(V )]

E(V |T )[1− E(V )] + [1− E(V |T )]E(V )
. (20)

Next, note that∑
{sj |sj≥0.5}

|2sj − 1|QTj =
∑

{sj |sj≥0.5}

(2sj − 1)QTj

= 2E(V |T )[E(sj|sj ≥ 0.5, T )− .5]

and∑
sj

|2sj − 1|QTj =
∑

{sj |sj≥0.5}

(2sj − 1)QTj +
∑

{sj |sj≤0.5}

(1− 2sj)QTj

= 2E(V |T )[E(sj|sj ≥ 0.5, T )− .5] + 2[1− E(V |T )][0.5− E(sj|sj ≤ 0.5, T )]
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Thus, we can rewrite the condition in (20) as

E(V |T )[E(sj|sj ≥ 0.5, T )− .5]

E(V |T )[E(sj|sj ≥ 0.5, T )− .5] + [1− E(V |T )][0.5− E(sj|sj ≤ 0.5, T )]
≥ E(V |T )[1− E(V )]

E(V |T )[1− E(V )] + [1− E(V |T )E(V )

or, equivalently

E(V |T )
[E(sj |sj≥0.5,T )−.5]
[0.5−E(sj |sj≤0.5,T )]

E(V |T )
[E(sj |sj≥0.5,T )−.5]
[0.5−E(sj |sj≤0.5,T )] + [1− E(V |T )]

≥
E(V |T ) [1−E(V )]

E(V )

E(V |T ) [1−E(V )]
E(V )

+ [1− E(V |T )]
.

Cross multiplication shows that for any x, y, and α with x ≥ 0, y ≥ 0, and α ∈ (0, 1),

αx

αx+ (1− α)
≥ αy

αy + (1− α)

if and only if x ≥ y. Thus, equation (20) is satisfied if

[E(sj|sj ≥ 0.5, T )− .5]

0.5− E(sj|sj ≤ 0.5, T )
≥ [1− E(V )]

E(V )
. (21)

As a final step, note that

E(sj) = E(sj|sj ≥ .5)E(V |T ) + E(sj|sj ≤ .5)[1− E(V |T )].

Since the decision problem is unbiased, E(sj) = 0.5, and thus

[E(sj|sj ≥ .5)− .5]E(V |T ) = [.5− E(sj|sj ≤ .5)][1− E(V |T )].

Rearranging this equation, it is the case that

[E(sj|sj ≥ 0.5)− .5]

0.5− E(sj|sj ≤ 0.5)
=

[1− E(V )]

E(V )

Finally, since QTj > QFj for all sj > 0.5,

E(sj|sj ≥ 0.5, T ) > E(sj|sj ≥ 0.5).

Likewise, QTj < QFj for all sj < 0.5. Thus

E(sj|sj ≤ 0.5, T ) < E(sj|sj ≤ 0.5).
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Thus, it is the case that

[E(sj|sj ≥ 0.5, T )− .5]

0.5− E(sj|sj ≤ 0.5, T )
≥ [E(sj|sj ≥ 0.5)− .5]

0.5− E(sj|sj ≤ 0.5)
=

[1− E(V )]

E(V )
.

Thus equation (21) is satisfied. This implies that equation (20) is also satisfied and that

equation (17) is greater than equation (19).

Proof. Proof of Proposition 4: A forecaster with signal sk will make a probabilistic

forecast of sk. Thus, given an outcome state o, the expected prediction from information

service Qt is given by

P (Qt|o) =
∑
{i|si≥0}

Qt
oisi.

Aggregating over both information services, the expected prediction of the population in

state o is given by

EP (θ|o) := θEP (QE|o) + (1− θ)EP (QN |o)

In the absence of any information service, the probabilistic forecast of each individual

would be s∅. By the law of total expectations, the posteriors are a mean-preserving spread

of the prior, and thus we have

s∅ = s∅EP (Qτ |T ) + (1− s∅)EP (Qτ |F ).

for τ ∈ {E,N}. This also implies that

s∅ = s∅EP (θ|T ) + (1− s∅)EP (θ|F )

and that

EP (θ|F ) =
s∅

1− s∅
[1− EP (θ|T )]. (22)

A forecaster with signal sk’s meta-prediction about the others is equal to

MP (θ|sk) = skEP (θ|T ) + (1− sk)EP (θ|F ).

Substituting in for EP (θ|F ) using (22), the meta-prediction of an individual with signal sk

can be expressed as

MP (θ|sk) = skEP (θ|T ) + (1− sk)
s∅

1− s∅
[1− EP (θ|T )].
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The total contribution of an individual is based on the difference between the individ-

ual’s prediction and meta-prediction. For an individual with signal sk,

sk −MP (θ|sk) = sk − skEP (θ|T )− (1− sk)
s∅

1− s∅
[1− EP (θ|T )]

or, equivalently:

sk −MP (θ|sk) =
sk − s∅
1− s∅

[1− EP (θ|T )]. (23)

Note first that the difference between an individual’s signal and his or her meta-prediction is

zero at s∅ and is linearly increasing in sk. This feature implies that the weight of an individual

with signal sk, proportional to |sk −MP (θ|sk)|, is directly related to the informativeness of

the posterior that an individual holds relative to the prior. Thus, individuals with more

informative posteriors (an ex-post notion of expertise) will be weighted proportionally more

than individuals with less informative posteriors.

We now show that E[P (QE|T )] − E[MP (θ|QE, T )] ≥ E[P (QN |T )] − E[MP (θ|QN , T )]

First note that because
∑

iQ
E
Ti = 1

E[P (QE|T )]− E[MP (θ|QE, T )] =
∑
i

[
si − s∅
1− s∅

[1− EP (θ|T )]

]
QE
Ti

=
[1− EP (θ|T )]

1− s∅
[
(∑

i

siQ
E
Ti

)
− s∅].

Thus, E[P (QE|T )]− E[MP (θ|QE, T )]− E[P (QN |T )]− E[MP (θ|QN , T )] is equal to

[1− EP (θ|T )]

1− s∅
[
(∑

i

siQ
E
Ti

)
−
(∑

i

siQ
N
Ti

)
]

The sign of this equation will be positive if∑
i

siQ
E
Ti ≥

∑
i

siQ
N
Ti,

or, equivalently if E[si|QE, T ] ≥ E[si|QN , T ].

We now show that E[si|QE, T ] ≥ E[si|QN , T ]. To do so, we will use Blackwell’s Theo-

rem (Blackwell 1951):

Blackwell’s Theorem For information service QE to be more informative than QN it is

necessary and sufficient that the value of information in service QE is greater than the value

of information in service QN for all sets of terminal actions, all utility functions, and all
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prior beliefs.

By Assumption 1, QE is more informative than QN . Let the action set V ∈ {T, F}
correspond to voting on whether an answer is true or false, and consider a utility function

U(V, o) that maps actions and states of the world into outcomes. Let U(T, T ) = 1, U(F, F ) =

0, U(F, T ) = 0, and U(T, F ) = 0. Given a signal si, expected utility is maximized by choosing

a = T in all states. The expected utility of this strategy given signal si is

E[U(Qt|si)] = U(T, T )si = si

By Blackwell’s theorem, the expected utility of information service QE is higher than

the expected value of information service QN for any utility function and any prior belief.

Using an initial prior of P (T ) = 1,

E[U(Qt)] =
∑
i

E[U(Qt|si)]Qt
T i =

∑
i

siQ
t
T i

Thus, E[U(QE)] > E[U(QN)] immediately implies∑
i

siQ
E
Ti >

∑
i

siQ
N
Ti,

which implies that the sign of
∑

i siQ
E
Ti −

∑
i siQ

N
Ti is positive.

The proof for the False state has an identical structure to the proof used for the True

state. E[MP (θ|QE, F )]− E[P (QE|F )]− E[MP (θ|QN , T )]− E[P (QN |T )] is equal to

[1− EP (θ|T )]

1− s∅
[
(∑

i

siQ
N
Fi

)
−
(∑

i

siQ
E
Fi

)
]

The sign of this equation will be positive if∑
i

−siQE
Fi >

∑
i

−siQN
Fi.

or, equivalently, ∑
i

(1− si)QE
Fi >

∑
i

(1− si)QN
Fi.

The left hand side of this last equation is E[1− si|QE, F ] while the right hand side is E[1−
si|QN , T ]. Using Blackwell’s theorem with U(F, F ) = 1, U(T, F ) = U(F, T ) = U(T, T ) = 0

and P (T ) = 0 immediately shows that this condition holds.
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Proof. Proof of Proposition 5: Assume that the event is true. The expected confidence

prediction of forecasters from information service t ∈ {E,N} in state o ∈ {T, F} is given by

EC(Qt|o) =
∑
i

(∑
k

c(sk)Rik

)
Qt
oi.

By assumption, all forecasters’ probability meta-predictions are fully adaptive. Thus,

the (confidence adjusted) meta-prediction of an individual in group t with signal sk is

MC(Qt|c(sk)) = c(sk)EC(Qt|T ) + (1− c(sk))EC(Qt|F ).

The expected meta-prediction of forecasters in information service Qt made by forecasters

with information service Qτ (τ ∈ {N,E}) when the state is o is given by

EMC(Qt|Qτ , o) =
∑
i

(∑
k

MC(Qt|c(sk))Rik

)
Qτ
oi.

Aggregating up across novices and experts, the expected probability meta-prediction from

information service Qt given state o is

EMC(Qt|o) = θEMC(Qt|QE, o) + (1− θ)EMC(Qt|QN , o).

In the true state, the probability meta-prediction will underestimate the true probability

average if for all t ∈ {E,N},

EC(Qt|T ) ≥ EMC(Qt|T ). (24)

We allow for equality here to account for cases where (i) all individuals know the state is

true or (ii) all individuals receive s∅. In these special cases the probability meta-prediction

will be equal to the average probability.

Noting that EC(Qt|T ) = θEC(Qt|T ) + (1 − θ)EC(Qt|T ), equation (24) holds if for

t ∈ {E,N} and τ ∈ {E,N},

EC(Qt|T ) ≥ EMC(Qt|Qτ , T ).
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Next, recalling that (i)

EMC(Qt|Qτ , o) =
∑
i

(∑
k

MC(Qt|c(sk))Rik

)
Qτ
oi,

(ii) MC(Qt|c(sk)) = c(sk)EC(Qt|T ) + (1 − c(sk))EC(Qt|F ), and (iii)
∑

i(
∑

k Rik)Q
τ
T i = 1,

equation (24) holds if

∑
i

(∑
k

(1− c(sk))[EC(Qt|T )− EC(Qt|F )]Rik

)
Qτ
T i ≥ 0.

This will be satisfied if EC(Qt|T )− EC(Qt|F ) ≥ 0 for all t.

Noting that by part (iv) of the definition of systematically miscalibrated,
∑

k c(sk)Rik =

c(si), and thus

EC(Qt|o) =
∑
i

c(si)Q
t
oi.

Thus, we need to show that
∑

i c(si)Q
t
T i >

∑
i c(si)Q

t
F i. Using the notation from Lemma 3,

let G(ŝ|0) =
∑
{i|si≤ŝ}Q

t
F i and G(ŝ|1) =

∑
{i|si≤ŝ}Q

t
T i and recall that MLRP implies that for

any ŝ

G(ŝ|0) ≤ G(ŝ|1).

Thus G(ŝ|1) first-order stochastic dominates G(ŝ|0). An equivalent definition of stochastic

dominance is that for any increasing function u(ŝ),∑
i

u(si)QT i ≥
∑
i

u(si)QFi

Using u(ŝ) = c(ŝ), this immediately implies that∑
i

c(si)[QT i −QFi] ≥ 0,

which is equivalent to EC(Qt|T )− EC(Qt|F ) ≥ 0.

The proof for the case where the event is false uses the same logic as the case where

the state is true. In this case we want to prove that EC(Qt|F ) ≤ EMC(Qt|Qτ , F ). By

definition,

EMC(Qt|Qτ , F ) =
∑
i

(∑
k

MC(Qt|c(sk))Rik

)
Qτ
F i.

Expanding outMC(Qt|sk)Qτ
Fk and using the same steps as above, EC(Qt|F ) ≤ EMC(Qt|Qτ , F )
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if ∑
i

(∑
k

(1− c(sk))[EC(Qt|F )− EC(Qt|T )]Rik

)
QFi ≤ 0.

We have shown by MLRP that EC(Qt|F ) ≤ EC(Qt|T ) and thus the condition holds for all

t.

Proof. Proof of Proposition 6: Let ρτk := Qτ
Fk + Qτ

Tk. Then, by the assumption that

s∅ = .5, Bayes Rule implies

Qτ
Tk = skρ

τ
k

and, by definition,

EV (Qτ |T ) =
1

2
Qτ
T∅ +

∑
{k|sk>.5}

Qτ
Tk =

1

2
s∅ρ

τ
∅ +

∑
{k|sk>.5}

skρ
τ
k.

Recall that MV (θ|sk) is defined as the probabilistic meta-prediction of a forecaster with

signal sk. Note that MV (θ|sk) is a weighted average of MV (QE|sk) and MV (QN |sk):

MV (θ|sk) := θMV (QE|sk) + (1− θ)MV (QN |sk).

Then, by definition,

EMV (θ|Qτ , T ) =
∑
k

MV (θ|sk)Qτ
Tk =

∑
{k|sk<.5}

MV (θ|sk)skρτk+
1

2
s∅ρ

τ
∅+

∑
{k|sk>.5}

MV (θ|sk)skρτk.

By the symmetry assumption, for all k ≤ .5m, (i) sk = 1 − sm+2−k, (ii) MV (θ|sk) =

MV (θ|1− sm+2−k), and (iii) ρτk = ρτm+2−k. This implies∑
{k|sk<.5}

MV (θ|sk)skρτk =
∑

{k|sm+2−k>.5}

MV (θ|sk)skρτk

=
∑

{k|sm+2−k>.5}

MV (θ|1− sm+2−k)(1− sm+2−k)ρ
τ
m+2−k

=
∑
{l|sl>.5}

MV (θ|1− sl)(1− sl)ρτl ,

where l = m+ 2− k. Noting that l ∈ {.5m+ 2, . . . ,m+ 1} and shares the same indexes as
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the original set {k|sk > .5}, we can combine terms and rewrite

EMV (θ|Qτ , T ) =
1

2
skρ

τ
∅ +

∑
{k|sk>.5}

[MV (θ|sk)sk +MV (θ|1− sk)(1− sk)]ρτk.

Using this representation of the meta prediction, the expected total contribution of an indi-

vidual in group τ is:

EV (Qτ |T )− EMV (θ|Qτ , T ) =
∑

{k|sk>.5}

[sk − skMV (θ|sk)− (1− sk)MV (θ|1− sk)]ρτk. (25)

By the definition of MV (θ|sk):

skM
V (θ|sk) + (1− sk)MV (θ|1− sk) = θ[skM

V (QE|sk) + (1− sk)MV (QE|1− sk)] (26)

+(1− θ)[skMV (QN |sk) + (1− sk)MV (QN |1− sk)].

Symmetry implies that EV (Qτ |F ) = 1− EV (Qτ |T ). Thus

MV (Qτ |sk) = skEV (Qτ |T ) + (1− sk)EV (Qτ |F )

= skEV (Qτ |T ) + (1− sk)(1− EV (Qτ |T )).

This implies that for sk ≥ .5:

skM
V (Qτ |sk) = sk[skEV (Qτ |T ) + (1− sk)(1− EV (Qτ |T ))]

= sk(1− sk) + (s2k − sk(1− sk))EV (Qτ |T )

and

(1− sk)MV (Qτ |1− sk) = (1− sk)[(1− sk)EV (Qτ |T ) + sk(1− EV (QE|T )]

= sk(1− sk) + ((1− sk)2 − sk(1− sk))EV (Qτ |T )

Substitution these two simplifications into (26) implies:

skM
V (θ|sk)+(1−sk)MV (θ|1−sk) = 2sk(1−sk)+(2sk−1)2[θEV (QE|T )+(1−θ)EV (QN |T )]

(27)

Let EV (θ|T ) := θEV (QE|T )+(1−θ)EV (QN |T ) be the expected vote in the true state

and note that this quantity is a constant. Then, using the simplification in (27), equation
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(25) implies

EV (Qτ |T )− EMV (θ|Qτ , T ) =
∑

{k|sk>.5}

[sk − 2sk(1− sk)− (2sk − 1)2EV (θ|T )]ρτk

=
∑

{k|sk>.5}

[(2sk − 1)(sk(1− EV (θ|T )) + (1− sk)EV (θ|T ))]ρτk

=

[ ∑
{k|sk>.5}

φ(sk)ρ
τ
k

]
+ φ(s∅)Qτ

T∅,

where φ(sk) = (2sk − 1)(sk(1− EV (θ|T )) + (1− sk)EV (θ|T )) and φ(s∅) = 0. Note that if a

symmetric information service has only two posteriors that occur with positive probability,

sk and (1− sk), φ(sk) is the expected difference between an individual’s expected vote and

their meta-prediction in the true state. This implies that when an information service is

symmetric, the total contribution of a forecaster with information service Qτ is the weighted

average of simpler symmetric information services that contain only two posteriors.

To show that the expected total contribution of an expert is greater or equal to the

expected total contribution of a novice, we need to show that

(EV (QE|T )− EMV (θ|QE, T ))− (EV (QN |T )− EMV (θ|QN , T )) ≥ 0

or, equivalently,[ ∑
{k|sk>.5}

φ(sk)ρ
E
k

]
−
[ ∑
{l|sl>.5}

φ(sl)ρ
N
l

]
+ φ(s∅)[QE

T∅ −QN
T∅] ≥ 0

We do this in two steps. First, we construct a set of non-negative weights wk,l where

(i) wk,l = 0 in cases where l > k and (ii)[ ∑
{k|sk>.5}

φ(sk)ρ
E
k

]
−
[ ∑
{l|sl>.5}

φ(sl)ρ
N
l

]
+ φ(s∅)[QE

T∅ −QN
T∅] =

∑
{k|sk≥.5}

∑
{l|sl≥.5}

[φ(sk)− φ(sl)]wk,l. (28)

We then show that φ(sk)− φ(sl) ≥ 0 for all k > l. This guarantees that each element in the

RHS of (28) is positive or zero.

The assumption of strict garbling implies that∑
{i|si≤ŝ}

[QE
Ti +QE

T (m+2−i)] ≥
∑
{i|si≤ŝ}

[QN
Ti +QN

T (m+2−i)]
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for all ŝ ≤ s∅. Noting that Qt
T (m+2−i) = Qt

F i, strict garbling implies

∑
i

ρEi ≥
∑
i

ρNi

for all i ∈ {1, . . . , m
2

+ 1}. We use this relationship to construct a matrix of weights W =

[wij](m+1)×(m+1) where (28) is satisfied.

We begin by constructing a submatrix consisting of the first (m
2

+1)× (m
2

+1) elements

of W. Let

VE = [ρE1 , ρ
E
2 , . . . , ρ

E
m
2
,
1

2
ρE∅]

be a m
2

+ 1 element vector. Note that 1
2
ρE∅ = QT∅ and thus, by construction, the elements

of the vector sum to 1. Likewise, define

VN,1 = [ρN1 , ρ
N
2 , . . . , ρ

N
m
2
,
1

2
ρN∅ ]

and note that the sum of these elements add up to 1.

We construct the first row of weights iteratively. For each j ∈ {1, . . . , m
2

+ 1}, let

w1,j =

V
N,1
j if V E

1 −
∑j−1

k=1w1,k ≥ V N,1
j ,

V E
1 −

∑j−1
k=1w1,k otherwise.

By the assumption of strict garbling ρE1 ≥ ρN1 , and w1,1 = ρN1 . All other weights in the first

row are either zero or positive with V E
1 =

∑m
2
+1

j=1 w1,j.

We now construct the rest of the weights row by row in an iterative process. At each

step i ∈ {2, . . . , m
2

+ 1}, let

VN,i =

[(
V N,1
1 −

i−1∑
k=1

wk,1

)
,
(
V N,1
2 −

i−1∑
k=1

wk,2

)
, . . . ,

(
V N,1

m
2
+1 −

i−1∑
k=1

wk,m
2
+1

)]
.

Iterating over j ∈ {1, m
2

+ 1}, let

wi,j =

V
N,i
j if V E

i −
∑j−1

k=1wi,k ≥ V N,i
j ,

V E
i −

∑j−1
k=1wi,k otherwise.

By the assumption of strict garbling,
∑j

k=1wk,j = V N,1
j . Thus, by the construction of the

vector V N,i, wi,j = 0 for all i > j. Combined, these two conditions imply
∑

iwi,j = V N,1
j for

all j in the submatrix. Further, since both vectors VE and VN,1 sum to 1 by construction,
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∑
j wi,j = V E

i for all i.

Taken together, the construction of the submatrix generates a set of weights such that

we can recover the elements of VN,1 by adding the elements of the column together. As

the first m
2

elements of VN,1 correspond to {ρN1 , . . . , ρNm
2
}, we can relate the weight matrix

to ρNj by adding the elements of column j together. Likewise, we can recover elements of

VE by adding the elements of the rows together. As the first m
2

elements of VE correspond

to {ρE1 , . . . , ρEm
2
}, we can relate the weight matrix to ρEi by adding the elements of row i

together.

We now take advantage of symmetry to construct the weights for elements of W where

i ∈ {m
2

+ 1, . . . ,m + 1} and j ∈ {m
2

+ 1, . . . ,m + 1}. To avoid confusion with the previous

step, let k ∈ {m
2

+ 1, . . . ,m + 1} represent the rows in this submatrix of W and let l ∈
{m

2
+ 1, . . . ,m + 1} represent columns. Next, let wk,l = w(m+2−k),(m+2−l). Note that by

reflection, wk,l = 0 if l > k. All other weights are greater or equal to zero.

By symmetry, ρEk = ρEm+2−k. Thus for all k ∈ {m
2

+ 2, . . . ,m+ 1}, ρEk = V E
m+2−k and

φ(sk)ρ
E
k =

∑
{l|sl≥.5}

φ(sk)wk,l

Likewise, if k = m
2

+ 1, QE
T∅ = V E

m+2−k and

φ(s∅)QT∅ =
∑
{l|sl≥.5}

φ(s∅)wk,l.

This implies [ ∑
{k|sk>.5}

φ(sk)ρ
E
k

]
+ φ(s∅)QE

T∅ =
∑

{k|sk≥.5}

∑
{l|sl≥.5}

φ(sk)wk,l (29)

Using the same logic,

φ(sl)ρ
N
l =

∑
{k|sk≥.5}

φ(sl)wk,l

for all l ∈ {m
2

+ 2, . . . ,m+ 1} and

φ(s∅)QN
T∅ =

∑
{k|sk≥.5}

φ(s∅)wk,l.

when l = m
2

+ 1. Thus[ ∑
{l|sl>.5}

φ(sl)ρ
N
l

]
+ φ(s∅)QN

T∅ =
∑

{k|sk≥.5}

∑
{l|sl≥.5}

φ(sl)wk,l (30)
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Subtracting (30) from (29) implies that (28) holds.

By Assumption 6, EV (θ|T ) < .75. We now show that when EV (θ|T ) < .75, φ(sk) >

φ(sl) if sk > sl ≥ .5. By definition

φ(sk)− φ(sl) = (2sk − 1)[sk(1− EV (θ|T )) + (1− sk)EV (θ|T )]

−(2sl − 1)[sl(1− EV (θ|T )) + (1− sl)EV (θ|T )]

= 2(sk − sl)[sk(1− EV (θ|T )) + (1− sk)EV (θ|T )]

−(2sl − 1)[(sk − sl)(2EV (θ|T )− 1)]

= (sk − sl)[2sk − 4skEV (θ|T ) + 2V (θ|T )− (2sl − 1)(2EV (θ|T )− 1)]

We have assumed that sk > sl. This implies that (sk−sl) is strictly positive and φ(sk) > φ(sl)

if and only

2sk − 4skEV (θ|T ) + 2EV (θ|T )− (2sl − 1)(2EV (θ|T )− 1) > 0. (31)

Notice that (31) is decreasing in sl. This implies that:

2sk − 4skEV (θ|T ) + 2EV (θ|T )− (2sl − 1)(2EV (θ|T )− 1) > 2sk − 4skEV (θ|T ) + 2EV (θ|T )

−(2sk − 1)(2EV (θ|T )− 1).

Thus, a sufficient condition for φ(sk)− φ(sl) to be positive is for

2sk − 4skEV (θ|T ) + 2EV (θ|T )− (2sk − 1)(2EV (θ|T )− 1) ≥ 0.

Rearranging this equation, φ(sk)− φ(sl) is positive if

EV (θ|T )− .25

2EV (θ|T )− 1
≥ sk.

Further, noting that sk ∈ (.5, 1], φ(sk)− φ(sl) is positive if

EV (θ|T )− .25

2EV (θ|T )− 1
≥ 1.

The LHS is decreasing in EV (θ|T ) and equal to one when EV (θ|T ) = .75. Thus φ(sk) > φ(sl)

whenever EV (θ|T ) < .75

By the construction of the weight matrix, there exists at least one element wk,l with

k > l where wk,l > 0. For this element [φ(sk) − φ(sl)]wk,l > 0. Noting that wk,l = 0 when
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k < l, it follows that all other elements of (28) are either positive or zero and thus

(EV (QE|T )− EMV (θ|QE, T ))− (EV (QN |T )− EMV (θ|QN , T ))

is positive.

Online Appendix D: Additional Empirical Results

D1. Estimated weights in Experiment 2

In this appendix, we estimate the weights of individual forecasters in Experiment 2. Our

analysis is identical to that of Experiment 1 (see Section 3.1.2). For the SC algorithm, we

once again estimate the prior by regressing the probability meta-prediction on the probability

forecast and finding where this line crosses the identity line. Over this entire dataset for

Experiment 2, the prior is estimated to be at .68. Thus, the data in this dataset is also

biased towards true.

Figure 9 shows the estimated weights in the SP algorithm (top panel) and SC algorithm

(bottom panel) as a function of the signal they received for all five grade levels combined. As

before, the black solid line in each graph shows the predictions from each theoretical model

while the dashed line shows the estimates from a non-parametric kernel regression. As seen

in the top graph, both the magnitude of forecasters’ signals (|Pik − 0.5|) and their votes

(Vik) were significant negative predictors of their weight in the SP algorithm, β1 = −0.70,

F (1, 458) = 2108.6, p < .001 and β2 = −0.06, F (1, 458) = 177.0, p < .001. There is once

again a gap in the weight function at 0.5 in the same direction as before, which indicates

that there is bias in the dataset towards answering true. However, unlike the states data,

the gap is much smaller, and individuals who are certain that an event is true or false have

weights that are less than half that of an individual who has a vote meta-prediction of 0.5.

As seen in the bottom panel, the SC algorithm has weights that are increasing in the

distance away from the predicted prior, with a significant and large positive slope in the model

specification that is consistent with the theoretical predictions, β1 = 0.22, F (1, 458) = 118.3,

p < .001. Better-informed forecasters are therefore generating larger weights in the SC

algorithm than lesser-informed forecasters.

Our results here are therefore consistent with our theoretical model predictions: weights

in the SP algorithm are decreasing in the distance from the 0.5 in the quiz dataset whereas

weights in the SC algorithm are increasing in the distance away from the estimated unin-

formed prior.
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Figure 9: The relationship between forecasters’ posterior and the weight assigned to them
by the SP algorithm (top panel) and the SC algorithm (bottom panel) for the Quiz Data.
The solid black lines are the predictions from the theoretical models. The dashed line is
from a non-parametric kernel regression.
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D2. Weights and Expertise in Experiment 1 and 2

In the main text, we divided forecasters into high-performers and low-performers as a way of

separating forecasters who are likely to be experts from those who are likely to be novices.

In this section, we study an alternative specification where we further subdivide forecasters

into quartiles to better understand how forecasters with different track-records contribute to

the algorithm.

Similar to our approach in the main text, we sorted forecasters based on their mean

accuracy on all other decision problems in the test set using leave-one-out cross-validation.

Next, we divided forecasters into four quartiles containing equal numbers of forecasters and

examined the average weight assigned by each algorithm to each quartile of forecasters over

the test set. By construction, the weights in the four quartiles add up to one.

Figure 10 shows the alternative quartile specification for Experiment 1. As seen in

the right hand panel of Figure 10, both the SP and SC algorithm over-weight forecasters in

the highest two quartiles and under-weight forecasters in the lowest two quartiles on false

questions. However, the SC algorithm assigns substantially more weight to forecasters in the

highest quartile and substantially less weight to forecasters in the lowest quartile, compared

to the SP algorithm. As seen in the left panel, the SC also over-weights forecasters in the

highest quartile and under-weights forecasters in the lowest quartile in true questions, while

the weights in the SP algorithm are similar across the four quartiles. Thus, the SC algorithm

appears to be more effective than the SP algorithm at assigning weight to forecasters who

are correct more often on average.

We also applied the same analysis to the Quiz dataset from Experiment 2. We com-

puted average weight assigned by the SC algorithm and SP algorithm assigned to each

quartile of forecasters separately for each of the levels of difficulty and overall across all five

levels of difficulty. As seen in Figure 11, both algorithms under-weight the least accurate

forecasters and over-weight the most accurate forecasters in the more difficult datasets, but

not necessarily in the easier dataset where a large proportion of forecasters are correct. On

difficulty 2, the SC algorithm does a much better job at distinguishing between the best-

performing and worst-performing individuals, whereas the SP algorithm assigns both groups

approximately equal weights. Collapsing across all five difficulties (bottom right panel),

the SC algorithm generates a larger aggregate weight for the most accurate forecasts and a

smaller aggregate weight for the least accurate forecasters.
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Figure 10: The average weight assigned by the SC algorithm and the SP algorithm as a
function of forecasters’ accuracy in the States dataset for the events where the outcome was
“True” (left) and “False” (right). Forecasters were sorted into four bins, with ‘Q1’ containing
the least accurate forecasters and ‘Q4’ containing the most accurate forecasters. The dotted
line indicates the weights of an algorithm that weights all forecasters equally. Error bars
represent the standard error.
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Figure 11: The average weight assigned by the SC algorithm and the SP algorithm as a
function of forecasters’ accuracy for each of the five individual difficulties and overall across
all five difficulties in the Quiz dataset. Forecasters were sorted into four bins, with ‘Q1’
containing the least accurate forecasters and ‘Q4’ containing the most accurate forecasters.
The dotted line indicates the weights of an algorithm that weights all forecasters equally.
Error bars represent the standard error.
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Online Appendix E: Forecaster Calibration Results

In this Appendix, we have included the calibration curves for individual forecasters’ proba-

bilistic forecasts in the States dataset from Experiment 1 and the Quiz dataset from Experi-

ment 2. Figures 12 and 13 below shows the accuracy of individuals’ forecasts with respect to

their probabilistic forecasts with data binned by decile for each respective dataset. The rel-

ative size bubble for each decile shows the proportion of probability forecasts in the dataset

in each decile. As can be seen in both figures, forecasters are overconfident when they would

vote for true but not when they would vote for false. Thus, both the states data and the quiz

data exhibit specific overconfidence in the framework discussed in Liberman and Tversky

(1993) (also called overprediction in the parlance of Griffin and Brenner (2007)).

In both datasets, we found that the consensus vote was for true. Thus, the specific

overconfidence observed is consistent with the consensus effect discussed in Koriat (2008)

where forecasters who believe that the consensus answer is correct tend to be overconfident

while forecasters who believe that the consensus answer is false tend to be underconfident.

Figure 12: Calibration Curve for the States dataset showing the proportion of correct fore-
casts for each probability decile. The size of each bubble indicates the proportion of forecasts
in that decile.
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Figure 13: Calibration Curve for the Quiz dataset showing the proportion of correct forecasts
for each probability decile. The size of each bubble indicates the proportion of forecasts in
that decile.
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