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1 Introduction

Two-sided allocation problems abound in economics. Markets assign buyers to sellers, students

to colleges, doctors to hospitals, and workers to firms, and enable them to trade at mutually

agreeable prices. A fundamental question, first raised and answered in the negative for specific

setups by Vickrey (1961), Hurwicz (1973), and Myerson and Satterthwaite (1983), is whether

a market maker can costlessly induce buyers and sellers to reveal the information necessary to

allocate goods efficiently.

Intuition for the impossibility of ex post efficient trade can be developed by considering

the insight from the Vickrey-Clarke-Groves mechanism (VCG) and the literature on dominant

strategy implementation that truthful revelation of private information is possible if and only

if each agent receives his social marginal product as a transfer (plus a constant). Because the

market maker can extract only the social welfare of an allocation but must pay each agent

his social marginal products to reveal his information, ex post efficient trade is impossible

without running a deficit when the sum of social marginal products exceeds social welfare.

In the bilateral trade setup of Myerson and Satterthwaite (1983), this occurs, for example,

when the buyer’s and the seller’s types have overlapping supports. Viewed from this angle, the

impossibility result stems from the fact that buyers and sellers are complements in the sense

that the sum of their individual social marginal products exceeds their joint social marginal

product.1

Using this insight and a surprising connection between VCG payments and Shapley’s (1962)

result that in an assignment game agents on opposite sides of the market are complements, we

first establish the impossibility of ex post efficient trade for all one-to-one allocations problems

with independent private information and identical supports.2 This result provides the unifying,

and to our knowledge, novel insight that the underlying force behind the impossibility of ex

post efficient trade in the two-sided allocation problems of Myerson and Satterthwaite (1983),

Gresik and Satterthwaite (1989), and McAfee (1992) is that these are one-to-one allocation

problems. The connection between VCG payments and Shapley (1962) also implies that ex

1As is well-known, the VCG-mechanism is an efficient mechanism that endows agents with dominant strate-
gies. It is due to the independent contributions of Vickrey (1961), Clarke (1971), and Groves (1973). The richness
of the environment in Groves (1973) does not permit dominant strategies, but the mechanism developed there
endows agents with such strategies in simpler environments such as the ones studied in Groves and Loeb (1975)
or here.

2Loertscher, Marx, and Wilkening (2015) invoke Shapley’s (1962) theorem to prove the impossibility of trade
in one-to-one allocation problems with homogeneous objects. Among other things, we extend this to all matching
problems with transfers without any restriction on the nature of the objects that are traded.
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post efficient trade with privately informed agents is impossible in the assignment game of

Shapley and Shubik (1972), which is popular in the literature on matching with transfers but

has received relatively little attention from the mechanism design literature.

Though one-to-one allocation problems provide tractable models and have received con-

siderable interest in the literature on two-sided market design,3 many economically relevant

environments involve agents whose types are multi-dimensional and who have demands for or

capacities to produce multiple goods. Such environments include the FCC’s upcoming “incen-

tive auction,” the creation of health exchanges under the Affordable Care Act, and two-sided

platforms that coordinate production and consumption plans via forward markets when both

buyers and sellers can substitute across products. This raises the question as to whether the

impossibility of ex post efficient trade can be shown for more general many-to-many allocation

problems.

We show that a generalization of complementarity, called component complements,

implies the impossibility of ex post efficient trade in environments with multi-dimensional

types, multi-unit demands, and multi-unit capacities. We say that buyers and sellers are

component complements if the social surplus generated in each component of the optimal

trading network is less than the sum of the buyers’ and sellers’ individual marginal products

within that component.

Of course, the usefulness of the component complements condition depends on the ease with

which it can be verified in applications. Our proof of the impossibility of one-to-one allocation

problems is based on representing these problems as assignment games and then leveraging

the complementarity result of Shapley (1962). A natural question to ask, then, is under what

conditions on the primitives — that is, payoff functions — can a general two-sided allocation

problem be represented as an assignment game? Calling such a two-sided allocation problem

a matching problem, we show that the component complements condition is satisfied in

any matching problem, which implies the impossibility of ex post efficient trade for all such

problems. We then derive a necessary and sufficient condition on agents’ payoff functions –

called decomposability – for a two-sided allocation problem to be a matching problem.

To be more precise, we call a two-sided allocation problem a matching problem if there exists

an assignment game between the objects and replicas of the agents such that a buyer’s payoff in

the two-sided allocation problem from consuming a package of objects corresponds to the total

3See Loertscher, Marx, and Wilkening (2015) for a recent survey.
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payoff of the replicas of that buyer in the assignment game when the objects in that package are

optimally assigned to the buyer’s replicas and when a similar condition holds for each seller.4

Any optimal matching in the assignment game corresponds to an efficient allocation in the

original two-sided allocation problem, and the welfare generated in the two-sided allocation

problem and the total payoff generated in the assignment game differ by a constant. This

correspondence between the allocation problem and the assignment game carries over to any

subset of agents. Extending the results of Shapley (1962) to setups in which sets of buyers

and sellers are considered, we show that the component complements condition holds in any

matching problem, implying that ex post efficient trade is impossible in any matching problem.

Homogeneous objects and additive payoffs are two simple examples of two-sided allocation

problems that are matching problems. Although efficient trades are generally not one-to-one

with homogeneous objects, multi-unit demands, and multi-unit capacities, one can decom-

pose every agent into replicas of himself with unit-demand or unit-supply in such a way that

the efficient allocation can be represented as consisting of one-to-one trades between replicas.

Section 2 provides an illustrative example of how this works. We show that a two-sided al-

location problem is a matching problem if and only if each agent can be decomposed. As

decomposability is a condition on each individual agent, it can be verified without having to

account for the interaction between different agents. Put differently, impossibility of ex post

efficiency obtains in the setups studied by Vickrey (1961), Shapley and Shubik (1972), Myerson

and Satterthwaite (1983), Gresik and Satterthwaite (1989), and McAfee (1992) because these

are matching models.

In addition to the examples above, two-sided allocation problems that are matching prob-

lems include all problems with unit demands and unit supplies, the homogeneous objects model

with multi-unit traders and with substitutes utilities and costs, models with additive payoffs,

a version of Ausubel’s (2006) heterogeneous commodities model with additively separable pay-

off functions, and any problems involving a mixture of agents with payoff functions of these

forms. We unify these models by showing that buyers’ and sellers’ payoff functions in each of

these models exhibit rank-dependent discounts and that any model in which agents’ payoff

functions have this form is a matching problem.

4A notionally related but substantively different strand of literature has studied similarities between matching
models without a transfers and auctions, which involve transfers, and established equivalences between these
two models; see, for example, Kelso and Crawford (1982), Hatfield and Milgrom (2005), or Hatfield, Kominers,
Nichifor, Ostrovsky, and Westkamp (2015). In contrast, we study under what conditions a two-sided allocation
problem is a matching problem, focusing on models with quasi-linear utility and transfers in either case.
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This paper combines two strands of literature: matching with transfers and the Bayesian

mechanism design literature with two-sided private information. Initiated by Koopmans and

Beckmann (1957), Shapley (1962), and Shapley and Shubik (1972) with recent contributions by,

among others, Bikhchandani and Ostroy (2002), Echenique, Lee, Shum, and Yenmez (2013),

Chambers and Echenique (2015), and Choo (forthcoming), the literature on matching with

transfers has, beyond concerns of stability and its relation to the core, paid limited attention to

individuals’ incentives to reveal what is plausibly their private information. We show that it is

impossible to elicit such information without running a deficit if there are least efficient types

on both sides of the market that never trade.5 From a modeling perspective, our paper extends

the package assignment model of Bikhchandani and Ostroy (2002) by introducing heterogeneity

on the sellers’ side.6

As mentioned, the literature on Bayesian mechanism design has predominantly focused on

settings with one-dimensional types, with little attention to the connection between allocation

problems and matching problems. An important implication of our approach is that a broad

class of models are matching problems, including the canonical two-sided market models of

Vickrey (1961), Shapley and Shubik (1972), Myerson and Satterthwaite (1983), Gresik and

Satterthwaite (1989), McAfee (1992), Loertscher and Mezzetti (2015), and a two-sided, addi-

tively separable version of Ausubel’s (2006) model with heterogeneous commodities. Rather

than being disjoint and independent problems, we demonstrate and characterize the connection

between matching models and the models that are predominantly used in Bayesian mechanism

design.7

In concurrent work, Segal and Whinston (2014) derive impossibility results that revolve

around tests for a multi-valued marginal core in allocation games with monetary transfers.

5As Shapley and Shubik (1972) show, the core of an assignment game is always nonempty. Furthermore, all
core payoffs are efficient. This extends to our environment because each agent is a coalition of replicas in the
corresponding assignment game. However, we show that no dominant strategy mechanism exists that achieves
ex post efficiency. Thus, we identify an environment in which core payoffs exist but it is not possible to elicit
the information required to achieve them.

6Among other things, our paper generalizes the conditions under which buyers are known to be substitutes,
which is a property that is assumed to hold in parts of the analysis of Bikhchandani and Ostroy (2002).

7In a recent paper that takes a bargaining (or robust mechanism design) approach to the problem of bilateral
trade with many items, Jackson, Sonnenschein, and Xing (2015) show that whether ex post efficiency is possible
depends on whether the two agents bargain over all items at once or independently. The difference between the
possibility results that Jackson, Sonnenschein, and Xing (2015) obtain and the impossibility results derived here
stems from a difference regarding the following assumptions: in line with Myerson and Satterthwaite (1983), we
assume that for every type realization of the other agent(s), an agent may be of such an unproductive type that
it is efficient that he does not trade at all, while the possibility results of Jackson, Sonnenschein, and Xing (2015)
are obtained under the assumption that the bilateral surplus over all items is positive for all type realizations
for which the density is positive.
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Our component complements condition is a strengthening of the marginal core condition. The

marginal core is therefore useful in providing general conditions under which the impossibility

results hold but, as with our component complements condition, may be difficult to apply

in practice. Our results regarding matching problems provide a complementary approach for

testing for the impossibility of ex post efficient trade. Importantly, using our decomposability

results, these conditions can be checked at the level of individuals’ payoff functions.

Our paper also relates to the literature on the micro-foundations of the canonical model of

price formation in markets. As first noticed by Arrow (1959), the Walrasian model is silent

about the institutions that simultaneously discover and set the market clearing prices. Recent

contributions by Satterthwaite, Williams, and Zachariadis (forthcoming) and Satterthwaite,

Williams, and Zachariadis (2015) have focused on the performance of the k-double-auction in

environments with unit traders, allowing for the possibility of correlated types and interde-

pendent values. Our work is complementary to this research agenda. We do not restrict the

mechanism that the market maker employs, other than imposing incentive and individual ratio-

nality constraints, and we allow for a general trading environment apart from imposing private

values (and independence for the Bayesian version of the impossibility result in Appendix B).

The remainder of this paper is organized as follows. Section 2 provides an illustrative

example. Section 3 describes the setup. In Section 4, we formally introduce the component

complements condition and derive the impossibility result for dominant strategy mechanisms.

We extend this result to Bayesian incentive compatible, interim individually rational mech-

anisms in Appendix B. Section 5 introduces assignment games and proves an impossibility

result for one-to-one allocation problems. Section 6 defines matching problems and shows that

our component complements condition is satisfied in matching problems. Section 7 provides a

necessary and sufficient condition, decomposability, for a two-sided allocation problem to be a

matching problem and defines a general class of models, those where agents’ payoff functions

exhibit rank-dependent discounts, in which ex post efficient trade is impossible. Section 8

concludes. Proofs for the results in Sections 5, 6 and 7 are in Appendix A.

2 Example

A novel insight in this paper is that some two-sided allocation problems — those that we refer

to as matching problems — can be represented by an assignment game between replicas of the

agent and objects. This section provides an example of such a representation and highlights
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some of the properties of the assignment game that are useful in proving our impossibility

results.

Consider a two-sided allocation problem with two buyers, called David and Martin, and a

seller, called Lloyd. Lloyd can produce two heterogeneous objects, A and B, at cost 2 for A, 3

for B, and 6 for producing both A and B. David values A at 9, B at 5, and the package AB

at 12, while Martin’s values are 5, 6, and 10, respectively.

With both buyers present, the efficient allocation assigns object A to David and object B

to Martin and generates a total welfare of 9. Because the efficient allocation involves Lloyd

trading with both David and Martin, this two-sided allocation problem cannot be represented

as one-to-one trades between David, Martin, and Lloyd. However, one can create replicas

of agents in such a way that a corresponding assignment game between the objects and the

replicas of the agents exists. Panel (a) of Table 1 defines the assignment game that is equivalent

to the two-sided allocation problem just described. For David and Martin, the first replica in

Table 1 contains the marginal utility from receiving either A or B, while the second replica

represents the marginal utility from adding either A or B to the package that already includes

the other object. For Lloyd, replica 2 in the assignment game represents the marginal cost of

producing either A or B, while replica 1 records the incremental cost of producing either A or

B given that the other one is produced.

Panel (a)

A B
David-1 9 5
David-2 7 3
Martin-1 5 6
Martin-2 4 5
Lloyd-1 3 4
Lloyd-2 2 3

Panel (b)

A B
Martin-1 5 6
Martin-2 4 5
Lloyd-1 3 4
Lloyd-2 2 3

Panel (c)

A B
David-1 9 5
David-2 7 3
Lloyd-1 3 4
Lloyd-2 2 3

Table 1: An assignment game corresponding to the two-sided allocation problem between
David, Martin, and Lloyd.

One can view the assignment of an object to a buyer as meaning that the buyer receives the

object, while assigning the object to a seller can be viewed as meaning that the seller does not

have to produce the object. Thus, if no replica of Lloyd receives an object, the interpretation

is that Lloyd produces both objects. It is immaterial which object is given to which replica

of a buyer if that buyer receives both objects because the diagonal entries always sum to 12

and 10, respectively, and likewise for the seller. However, if any agent receives only one object,

6



efficiency dictates that his first replica be assigned the object.

The solution to this assignment game, shown in bold in Panel (a) of Table 1, assigns object

A to the first replica of David and B to the first replica of Martin. Because no replica of Lloyd

receives an object, Lloyd produces both objects. The total payoff from this assignment is 15

and differs from the total welfare of 9 in the efficient allocation by 6, which is the cost imposed

on Lloyd associated with producing both objects.

An important feature of the assignment game constructed above is that the correspon-

dence between the allocation problem and the assignment game carries over to any subset of

agents. To see this, it is useful to compare the cases in which David and Martin, respectively,

are removed from the model. If David is not present in the original allocation problem, effi-

ciency dictates that Lloyd continue to produce both objects and that they be given to Martin,

generating a total welfare of 4. In the corresponding assignment game with both replicas of

David removed, shown in Panel (b) of Table 1, both objects are optimally assigned to replicas

of Martin and the total value from these assignments is 10. As in the original case with all

agents included, the difference is 6. Likewise, if Martin is removed from the original two-sided

allocation problem, only object A is traded under efficiency, generating a welfare of 7. In the

corresponding assignment game, shown in Panel (c) of Table 1, object A is assigned to replica

1 of David and object B is assigned to replica 1 of Lloyd, generating a value in the assignment

game of 13. The difference is again 6. Thus, the correspondence between the solution to the

two-sided allocation problem and the assignment game holds when either buyer is removed.

If Lloyd is removed, no trade occurs and a welfare of 0 is generated. The corresponding

assignment game is obtained by removing the replicas of Lloyd as well as the objects he is able

to produce. In this simple example, an empty matrix is obtained yielding a value of 0. The

difference between the welfare in the allocation problem and the value in the assignment game

is 0 because no object can be produced.

As will be seen in the rest of the paper, the component complements condition is satisfied

if, within each component, the sum of the individual marginal surpluses is greater than the

total surplus generated in that component. For the values above, where all agents belong to

the same component, the component complements condition holds since the marginal surplus

of David is 5 (=9-4), the marginal surplus of Martin is 2 (=9-7), the marginal surplus of Lloyd

is 9, and the total surplus generated in the component is 9. In the assignment game, a similar

relationship holds as the replicas of buyers and sellers are removed; the difference in the output
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of the assignment game between the full game and the game without David is 5 (=15-10).

Likewise the difference in output is 2 when Martin is removed (=15-13) and 15 when Lloyd is

removed (=15-0). As the total output of the assignment game is 15 (=9+6), there is a direct

correspondence between the marginal surpluses in the allocation game and the assignment

game.

Under VCG, Lloyd would receive a payment of 15 while David and Martin would each pay

4. The net deficit is 7, which corresponds to the difference between the sum of the marginal

surpluses and the surplus generated in the component. As this net difference can also be

calculated by removing sets of replicas from the assignment game, we can use properties of the

assignment game to determine conditions for which the impossibility theorem holds. We use

this intuition to generalize the impossibility theorem to matching problems in Section 6.2.

While the example above highlights how two-sided allocation problems can be represented as

an assignment games even in the presence of heterogeneous objects, not all two-sided allocation

problems can be represented in this way. For example, if David values the package AB at 15,

there is no way of representing the problem as an assignment game.

Intuition suggests that the dividing line between agents that are and are not decomposable

is whether they see objects as substitutes or complements. While Proposition 3 shows that

objects being substitutes is a necessary condition for decomposability, it is not sufficient. As one

example, consider an extension of our model where there is a third object, called C, and assume

that David derives a stand-alone payoff of 7 for this object, a payoff of 14 for the package AC,

and a payoff of 11 for the package BC. David is not decomposable and the two-sided allocation

problem is not a matching problem, irrespective of the payoff functions of other agents.

In Section 7.2, we show that an agent is decomposable if his payoff function exhibits rank-

dependent discounts. To the best of our knowledge, none of the existing definitions of sub-

stitutability that have been used in the various literatures are sufficient (see, e.g., Hatfield,

Immorlica, and Kominers (2012) or Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp

(2015)).

3 Setup

A two-sided allocation problem consists of B buyers b ∈ B, S sellers s ∈ S, and O objects o ∈ O.

Each seller has Os objects os ∈ Os that only he can produce. Each object can be produced by

one seller. Therefore, {Os}s∈S is a partition of O. We call Os the potential set of seller s.
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Each buyer b can consume any package xb ⊆ O. Let P := P(O) be the set of all possible

packages that can be consumed and define P = 2O to be the cardinality of the set.8 Each seller

s can produce any package xs ⊆ Os. Let Ps := P(Os) and define its cardinality as Ps = 2Os .

An allocation x = ((xb)b∈B, (xs)s∈S) corresponds to trades between buyers and sellers, where

xb is the package b receives and xs is the package s produces. An allocation is feasible if (i)

each seller produces a subset of his potential set: xs ⊆ Os for all s ∈ S, (ii) each object that

is consumed has been produced: xb ⊆ ∪s∈Sxs for all b ∈ B, and (iii) each object is consumed

at most once: xb ∩ xb′ = ∅ for any b, b′ ∈ B with b 6= b′. Let X denote the set of feasible

allocations.

Buyer b’s payoff function takes the quasi-linear form ub(xb,vb)− tb, where xb is the package

the buyer receives, vb is buyer b’s type, and tb is a monetary transfer made by buyer b to

the mechanism. Similarly, seller s’s payoff function is ts − κs(xs, cs), where ts is a monetary

transfer made by the mechanism to seller s. We normalize the gross surplus of non-trading

players to zero, i.e., ub(∅, ·) = 0 and κs(∅, ·) = 0. We also assume that ub(xb,vb) and κs(xs, cs)

only depend on the agents’ own allocations and on their own private types.9 We allow for free

disposal by both buyers and sellers. For a buyer of type vb who is allocated package xb, define

the upper envelope function ub:

ub(xb,vb) := max
x̂b

ub(x̂b,vb) such that x̂b ⊆ xb. (1)

The upper envelope function returns the largest possible utility from the available packages

that can be constructed from objects in xb allowing for free disposal. By construction, it is

monotonically increasing.

Analogously, for a seller of type cs who is allocated package xs, define the lower envelope

function κs:

κs(xs, cs) := min
x̂s

κs(x̂s, cs) such that xs ⊆ x̂s ⊆ Ps. (2)

The lowest envelope function represents the cost for s to produce any package that includes

objects in xs, accounting for cases in which it may be cheaper for s to produce a larger package

and to dispose of some of the objects produced. By construction, the lower envelope function

is also monotonically increasing.

8For instance, if there are two objects a and b, the set of possible packages contains {∅}, {a}, {b}, and {a, b}.
The cardinality of the set is 22 = 4.

9For the purposes of Theorem 1, we only need to assume that there are no negative externalities for non-
trading agents.
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Types are agents’ own private information and are defined over the packages that they

produce or consume. This implies that a buyer b’s type vb ∈ RP is a P -dimensional vector

of values corresponding to each possible consumption package. A seller s’s type cs ∈ RPs is

a Ps-dimensional vector of costs corresponding to each possible production package. Let Vb

denote the set of possible types for buyer b and Cs denote the set of possible types for seller

s. The sets V = Πb∈BVb and C = Πs∈SCs are the products of the sets of types, with typical

elements v and c. We assume that Vb and Cs are closed and convex sets. Later we impose

additional restrictions on the type space V × C.

For a feasible allocation x ∈ X and types (v, c), define social welfare as

W (x,v, c) =
∑

b∈B

ub(xb,vb)−
∑

s∈S

κs(xs, cs). (3)

Denote maximum welfare by W ∗(v, c) := W (x∗,v, c), where x∗ denotes an element of

the set of maximizers. Because we have assumed free disposal, restricting attention to upper

envelope utility functions and lower envelope cost functions is without loss of generality for the

purpose of calculating the maximal welfare. When there is no risk of confusion, we drop the

dependence of W ∗ on (v, c).

It is also useful to denote social welfare when a subset of buyers I ⊆ B and a subset of sellers

J ⊆ S are excluded. For any feasible allocation x of that allocation problem, social welfare is

W−I,−J(x,v, c) =
∑

b∈B\I

ub(xb,vb)−
∑

s∈S\J

κs(xs, cs). (4)

The maximum welfare of this smaller two-sided allocation problem is denoted W ∗
−I,−J

(v, c).

We drop the dependency on (v, c) when there is no risk of confusion and write W ∗
−I,−J

.

A direct mechanism is a triple (χ, tβ, tσ), where χ : V × C → X is an allocation rule

and tβ : V × C → RB and tσ : V × C → RS are the payment rules. Thus, given reports

(v, c), χ(v, c) is the chosen allocation, buyer b pays tβb (v, c), and seller s receives tσs (v, c). An

allocation rule is ex post efficient if it specifies an efficient allocation for every (v, c). For

the purpose of deriving the conditions under which ex post efficiency is impossible without

running a deficit, the well-known revelation principle (Myerson, 1981) implies that we can

restrict attention to direct mechanisms without loss of generality.

Any allocation of objects from sellers to buyers generates a set of trade links between

buyers and sellers that can be represented as a bipartite graph. A link between b and s is

denoted λb,s(x) ∈ {0, 1}, where λb,s(x) = 1 means that seller s produces a non-empty package

of objects for buyer b and λb,s(x) = 0 means that seller s produces nothing for buyer b.
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The trade links generated by an allocation can be partitioned into components, where

component G consists of a selection of buyers and sellers that are only linked to other buyers

and sellers in the same component. Let G(x) be the set of all components associated with

allocation x. Denote by B(G) and S(G) the sets of buyers and sellers in component G.

We refer to a problem as a one-to-one allocation problem if for all type profiles (v, c)

and efficient allocations x∗ the following two conditions hold:

(i) λb,s(x
∗) = 1 for some s implies λb,s′(x

∗) = 0 for all s′ 6= s for all b ∈ B

(ii) λb,s(x
∗) = 1 for some b implies λb′,s(x

∗) = 0 for all b′ 6= b for all s ∈ S.

Any other setup is referred to as a many-to-many allocation problem. Many-to-many

matching problems include setups in which one buyer is matched with multiple sellers or one

seller is matched with multiple buyers.

We now impose additional structure on the type space V ×C. Let v−b be the vector of types

of buyers other than b and let (v̂b,v−b) be the vector v with the type of buyer b replaced by v̂b,

and similarly for sellers. We assume that for every b ∈ B, there exists a least efficient type

vb ∈ Vb such that for any type profile (vb,v−b, c) and at every efficient allocation x∗(vb,v−b, c),

xb = ∅. Analogously, we assume that for every s ∈ S, there exists a least efficient type cs ∈ Cs

such that for any type profile (v, cs, c−s) and efficient allocation x∗(v, cs, c−s), xs = ∅.

Following Holmström (1979), we say the type space is smoothly connected if for all

buyers b, the set of mappings {ub(·,vb) : X → R | vb ∈ Vb} is smoothly connected, and for all

sellers s, the set of mappings {κs(·, cs) : X → R | cs ∈ Cs} is smoothly connected (for a formal

definition of smooth connectedness, see Definition 1 in Holmström (1979)). We assume that

the type space is smoothly connected.

4 Complementarity and the Impossibility of Ex Post Efficiency

In this section, we introduce and discuss the component complements condition, which says

that the surplus generated within a component is less than or equal to the sum of the marginal

contributions of buyers and sellers in the same component, and show that this is sufficient for the

VCG mechanism never to run a budget surplus. We then invoke a revenue equivalence theorem

to conclude that any other dominant strategy mechanism that respects individual rationality

never runs a budget surplus and runs a deficit under a strict version of the condition.
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4.1 Complements and Component Complements

Buyers and sellers are complements if for all (v, c) and (b, s) ∈ B× S,

W ∗
−b,. −W ∗

−b,−s +W ∗
.,−s −W ∗

−b,−s ≤ W ∗ −W ∗
−b,−s.

The expressions W ∗
−b,. − W ∗

−b,−s and W ∗
.,−s − W ∗

−b,−s capture, respectively, the individual

marginal contribution to welfare of buyer b and seller s to an economy that consists of all

buyers other than b and all sellers other than s. The right side is the marginal contribution of

adding the pair consisting of b and s to the economy without this pair. Thus, the inequality

simply states that the marginal contribution of the pair is not less than the sum of the individ-

ual marginal contributions when the other agent is not there. In this sense, buyers and sellers

are complements. An equivalent representation of the complements condition can be found by

adding W ∗ to both sides of this equation and rearranging:

W ∗ −W ∗
−b,. +W ∗ −W ∗

.,−s ≥ W ∗ −W ∗
−b,−s. (C)

We use this alternative representation in the rest of the paper. It says that the sum of the

individual marginal products when the other agent is there exceeds the marginal product of

the pair.

Buyers and sellers are component complements if for all (v, c), (b, s) ∈ B × S, and

G ∈ G(x∗),

∑

b∈B(G)

[W ∗ −W ∗
−b,.] +

∑

s∈S(G)

[W ∗ −W ∗
.,−s] ≥ W ∗ −W ∗

−B(G),−S(G). (CC)

(CC) requires that the individual marginal contributions to welfare of all buyers and sellers in

a component exceeds the surplus of the component.10

10Buyers and sellers satisfy the marginal core condition of Segal and Whinston (2014) if and only if

∑

b∈B

[W ∗ −W
∗
−b,.] +

∑

s∈S

[W ∗ −W
∗
.,−s] ≥ W

∗
.

Because buyers and sellers who do not trade produce no surplus, this condition can be rewritten as

∑

G∈G

[

∑

b∈B(G)

[W ∗ −W
∗
−b,.] +

∑

s∈S(G)

[W ∗ −W
∗
.,−s]

]

>
∑

G∈G

[

W
∗ −W

∗
−B(G),−S(G)

]

.

As can be seen by comparing this equation to (CC), the marginal core condition is satisfied any time (CC) holds.
We use the component complements rather than the marginal core condition because the main intuition and
results of this paper come from the complementarity between buyers and sellers that exist at the component
level.
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We say that buyers and sellers are strict component complements if (CC) holds and

if there exist a type profile (v, c) and component G such that (CC) holds strictly. In the one-

to-one setting, non-empty components are always of size two and so (CC) is satisfied if buyers

and sellers are complements. That is, for one-to-one allocation problems (C) implies (CC).

4.2 Dominant Strategy Mechanisms

A mechanism (χ, tβ, tσ) is dominant strategy incentive compatible (DIC) if for each

buyer b, type profile (v, c), and type v̂b for buyer b,

ub(χb(v, c),vb)− tβb (v, c) ≥ ub(χb(v̂b,v−b, c),vb)− tβb (v̂b,v−b, c),

and for each seller s, type profile (v, c), and type ĉs for seller s,

tσs (v, c)− κs(χs(v, c), cs) ≥ tσs (v, ĉs, c−s)− κs(χs(v, ĉs, c−s), cs),

where χb and χs denote the packages that buyer b receives and seller s produces under allocation

rule χ.

The mechanism satisfies ex post individual rationality (EIR) if for each buyer b and

type profile (v, c), ub(χb(v, c),vb) − tβb (v, c) ≥ 0 and for each seller s and type profile (v, c),

tσs (v, c)− κs(χs(v, c), cs) ≥ 0.

In what follows, we focus on the Vickrey-Clarke-Groves (VCG) mechanism, which is a DIC,

EIR direct mechanism that uses an ex post efficient allocation rule.11 Let x∗(vb,v−b, c) ∈

X(vb,v−b, c) and define for every buyer b,

W V CG
−b := min

vb∈Vb

W (x∗(vb,v−b, c),vb,v−b, c). (5)

Similarly, for every seller s, define

W V CG
−s := min

cs∈Cs

W (x∗(v, cs, c−s),v, cs, c−s). (6)

11While the VCG mechanism is named after the independent contributions by Vickrey (1961), Clarke (1971),
and Groves (1973), the genealogy of the term is interesting and seems, to us, still somewhat unclear. To the
best of our knowledge, Makowski and Ostroy (1987) were the first to use it. Green and Laffont (1977) seem to
have coined the term Groves schemes in honor of the seminal contribution by Groves (1973), which specializes
to VCG with an appropriately chosen constant. Mas-Colell, Whinston, and Green (1995, Section 23.C) refer to
what we call VCG as a Groves-Clarke scheme. Tracing out the origins of the mechanism is not only complicated
by the fact that it has not been introduced by anyone deliberately (as opposed to, e.g., Nash equilibrium), but
also by the circumstance that the environment for which Groves schemes were first introduced (Groves, 1973)
was too rich to permit dominant strategies. Only when simplified to the setup studied in Groves and Loeb (1975)
does the mechanism endow agents with dominant strategies. More importantly, there appear to be conflicting
definitions of VCG that coincide when there exist least efficient types but differ when such types do not exist.
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Notice that W V CG
−b and W V CG

−s are independent of, respectively, vb and cs.

The VCG mechanism selects χ(v, c) ∈ X∗, requires each buyer to pay a transfer payment

of

tβb (v, c) = W V CG
−b − (W ∗ − ub(χ(v, c),vb)),

and pays each seller a transfer payment of

tσs (v, c) = W ∗ + κs(χ(v, c), cs)−W V CG
−s .

The VCG mechanism is DIC because it aligns every agent’s incentives with those of society

by making the objective function of every individual equal to social welfare plus a constant

(W V CG
−s for a seller and −W V CG

−b for a buyer). It is also ex post individually rational because

ub(x
∗,vb) − tβb (v, c) ≥ 0 and tσs (v, c) − κs(x

∗, cs) ≥ 0 for any b, s, and (v, c). By the revenue

equivalence arguments of Green and Laffont (1977) and Holmström (1979), the VCGmechanism

is the revenue maximizing mechanism among all mechanisms that respect agents’ individual

rationality constraints ex post and endow them with dominant strategies. Our focus on VCG

is therefore without loss of generality.

Because we have assumed that there exists a least efficient buyer type, vb is the minimizer of

W (x∗(vb,v−b, c),vb,v−b, c), and similarly cs is the minimizer of W (x∗(v, cs, c−s),v, cs, c−s).

Thus, in our environment, W V CG
−b = W ∗

−b,. and W V CG
−s = W ∗

.,−s.
12 Revenue to the mechanism

when the types are (v, c), denoted R(v, c), is thus

R(v, c) =
∑

b∈B

tβb (v, c) −
∑

s∈S

tσs (v, c) = W ∗ +
∑

b∈B

[W ∗
−b,. −W ∗] +

∑

s∈S

[W ∗
.,−s −W ∗]. (7)

Using (7), the condition for VCG revenue, R(v, c), to be less than or equal to zero is

equivalent to

∑

b∈B

[W ∗(v, c) −W ∗
−b,.(v, c)] +

∑

s∈S

[W ∗(v, c) −W ∗
.,−s(v, c)] ≥ W ∗(v, c). (8)

Because buyers and sellers in positive-surplus components are the only buyers and sellers to

have positive surplus, the left side can be rewritten as:

∑

G∈G(x∗)

[ ∑

b∈B(G)

[W ∗(v, c) −W ∗
−b,.(v, c)] +

∑

s∈S(G)

[W ∗(v, c) −W ∗
.,−s(v, c)]

]
≥ W ∗(v, c). (9)

12Many authors define VCG with W ∗
−b,. and W ∗

.,−s directly. For example Green and Laffont (1977), Holmström
(1979), Makowski and Ostroy (1987), Mas-Colell, Whinston, and Green (1995), and Milgrom (2004) use this
definition. Authors using our definition include Krishna (2002) (which is based on Krishna and Perry (2000)),
Segal and Whinston (2014), Segal and Whinston (2011), and Loertscher, Marx, and Wilkening (2015). The
generalization of VCG to interdependent values by Ausubel (1999) also makes use of the more general definition.
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(CC) implies:

∑

G∈G(x∗)

[ ∑

b∈B(G)

[W ∗(v, c) −W ∗
−b,.(v, c)] +

∑

s∈S(G)

[W ∗(v, c) −W ∗
.,−s(v, c)]

]

≥
∑

G∈G(x∗)

[
W ∗ −W ∗

−B(G),−S(G)

]

= W ∗(v, c).

Thus, if (CC) holds, (8) holds.

We say that ex post efficient trade is impossible for a two-sided allocation problem if

there is no ex post efficient DIC-EIR mechanism for that allocation problem that never runs a

deficit, i.e. has revenue R(v, c) < 0 for an open set of type profiles and never runs a budget

surplus for any type profile. It is clear from the argument above that for a given (v, c), if (CC)

holds strictly for at least one component, then VCG revenue is negative, i.e., R(v, c) < 0. To

see that (CC) holds strictly for an open set of type profiles, consider the type profile v−b = v−b

and c−s = c−s and vb and cs such that s and b efficiently trade with each other and no other

trades occur. Because the type-space is smoothly connected, s and b will still efficiently trade

with each other while all the other agents will efficiently not trade in an open neighborhood

of these types. Because b and s remain the only traders, the sum of their marginal products

strictly exceeds social welfare. Thus, we have the following result:

Theorem 1 Ex post efficient trade is impossible in any allocation problem in which (CC)

holds.

5 Impossibility in One-to-One Allocation Problems

In this section, we analyze one-to-one allocation problems. These are natural when agents’

types are one-dimensional and buyers have unit demand and sellers have unit capacities and

objects are homogeneous. However, one-to-one allocation problems are not confined to setups

with one-dimensional types. For example, the housing market model of Shapley and Shubik

(1972) has multi-dimensional types because buyers with unit demand have heterogeneous values

for the sellers’ houses.

In what is referred to in the literature as an assignment game, Shapley (1962) derives a

result that implies that buyers and sellers are complements. In this section, we show that

one-to-one allocation problems can always be represented as an assignment game. We use this

result to prove that (CC) holds in all one-to-one allocation problems.
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An assignment game is defined by a B × S-dimensional payoff matrix

A =




a1,1 a1,2 · · · a1,S
a2,1 a2,2 · · · a2,S
...

...
. . .

...
aB,1 aB,2 · · · aB,S


 (10)

that contains all the payoff relevant information in the game. The assignment game uses

a corresponding B × S-dimensional matching matrix L with elements lb,s ∈ {0, 1}, where

lb,s = 1 if b and s are matched together and lb,s = 0 if they are not. A matching is feasible

if the sum of any row or column in the matching matrix is at most one. A feasible match is

efficient if the value of the match
∑

b∈B

∑

s∈S

lb,s ab,s (11)

is maximized. As is well-known, the efficient match from an assignment game can be found by

solving the following linear programming problem:13

max
L

∑

b∈B

∑

s∈S

lb,s ab,s

subject to
∑

s∈S

lb,s ≤ 1 for all b ∈ B

and
∑

b∈B

lb,s ≤ 1 for all s ∈ S.

(12)

We denote the value generated from an efficient match by V ∗(A). Similarly, we let V ∗(A−I,−J)

be the maximal value of an assignment game when rows I ⊆ B and columns J ⊆ S are removed.

Two buyers (or two sellers) are substitutes for each other if their joint marginal payoff

exceeds the sum of their individual marginal payoffs:

V ∗(A)− V ∗(A−b,.) + V ∗(A)− V ∗(A−b′,.) ≤ V ∗(A)− V ∗(A−{b,b′},.) for any b, b′ ∈ B

V ∗(A)− V ∗(A−s,.) + V ∗(A)− V ∗(A−s′,.) ≤ V ∗(A)− V ∗(A−{s,s′},.) for any s, s′ ∈ S.

Analogously, a buyer and a seller are complements to one another if their joint marginal

payoff is smaller than the sum of their individual marginal payoffs. That is, for any b ∈ B and

s ∈ S,

V ∗(A)− V ∗(A−b,.) + V ∗(A) − V ∗(A.,−s) ≥ V ∗(A)− V ∗(A−b,−s). (13)

Shapley (1962) establishes the following result:

13Solutions to this problem can be found by inspection if A is small enough, by using the Hungarian algorithm
of Kuhn (1955), or through linear programming techniques (Dantzig, 1963).
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Theorem 2 (Shapley, 1962, Theorems 1 and 2) In any assignment game, any two agents

on the same side of the market are substitutes for each other while any two agents on opposite

sides are complements to each other.

For any allocation problem in which the efficient allocation is one-to-one for all (v, c), a

buyer b and a seller s who are matched always trade the package that maximizes their joint

surplus, whose value we denote by ab,s := max {maxx∈Ps ub(x,vb)− κs(x, cs) , 0 }. Using these

elements to construct an assignment game payoff matrix A as in (10), it follows that the

one-to-one allocation problem is equivalent to an assignment game.

At an optimal matching in the resulting assignment game, W ∗−W ∗
−b,. = V ∗(A)−V ∗(A−b,.),

W ∗ −W ∗
.,−s = V ∗(A) − V ∗(A.,−s) and W ∗ −W ∗

−b,−s = V ∗(A) − V ∗(A−b,−s). By Theorem 2,

buyers and sellers in the assignment game are complements. This implies that for any b ∈ B

and s ∈ S,

V ∗(A)− V ∗(A−b,.) + V ∗(A) − V ∗(A.,−s) ≥ V ∗(A)− V ∗(A−b,−s).

Using the relationships between W ∗ and V ∗ above, this also implies that for any b ∈ B and

s ∈ S,

W ∗ −W ∗
−b,. +W ∗ −W ∗

.,−s ≥ W ∗ −W ∗
−b,−s. (14)

Thus, buyers and sellers in the original two sided allocation problems are complements and

(CC) holds. The proposition below then follows.

Proposition 1 Ex post efficient trade is impossible in any one-to-one allocation problem.

Proposition 1 implies that if buyers and sellers have unit demand and unit supply or are

exogenously restricted to a single partner such as in the model of Shapley and Shubik (1972),

ex post efficient trade is impossible without running a deficit.

6 Matching Problems

As we saw in the previous section, connecting a one-to-one allocation problem to a related

assignment game allows us to use existing results by Shapley (1962) to extend the impossibility

results of Myerson and Satterthwaite (1983) to a general class of economic problems. This

section shows that we can use a similar correspondence to establish impossibility results in

many-to-many allocation problems.
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We begin in Section 6.1 by defining matching problems. In Section 6.2 we use a general-

ization of Shapley (1962) to show that (CC) holds in any allocation problem that is a matching

problem. This result provides sufficient conditions for the impossibility theorem to hold in

many-to-many settings. In Section 7, we return to the primitives of the allocation problem and

characterize matching problems.

6.1 Definition of a Matching Problem

Consider the assignment game defined by a payoff matrix A of dimension (B + 1)O ×O. The

rows of the payoff matrix represent replicas of the buyers and sellers while the columns of

the matrix represent objects. To allow for the matrix to encode the assignment of any feasible

package to a buyer, each buyer in the original allocation problem is represented in the matrix as

O replicas. There are O additional rows to represent the sellers, resulting in a total of (B+1)O

rows. Each column of the matrix represents one of the O objects in the economy.

Let B̂ be the set of buyer replicas with typical element b̂ and cardinality B̂ = B · O. Let Ŝ

be the set of seller replicas with typical element ŝ and cardinality Ŝ = O. Then R̂ := B̂ ∪ Ŝ is

the set of all replicas, with typical element r. The cardinality of this set, (B +1)O, is equal to

the number of rows of the payoff matrix.

It is useful to also define B̂b ⊆ B̂ to be the set of replicas of buyer b with cardinality O.

Likewise we define Ŝs ⊆ Ŝ to be the set of replicas of seller s with cardinality Os. We also

define the set of replicas Î to be the replicas corresponding to the buyers in set I, i.e., B̂b ⊆ Î

if and only if b ∈ I. The set of seller replicas Ĵ corresponds to sellers in set J in an analogous

way. Finally, we denote by OJ := ∪s∈JOs the set of objects in the potential set of a seller in

set J.

Definition 1 (Replica-Object Assignment Game) A replica-object assignment game

of a two-sided allocation problem is a (B +1)O×O matrix A = (ar,o)r∈R̂,o∈O with nonnegative

elements satisfying ar,o = 0 for all (r, o) such that r ∈ Ŝs and o ∈ Os′ with s 6= s′.

In the original two-sided allocation problem, objects could be (i) produced by a seller and

allocated to a buyer, (ii) produced by a seller and destroyed, or (iii) not produced. These

allocations are expressed in the matching matrix in the following way. When an object os ∈ Os

is assigned to a replica of buyer b, this implies that the object is produced by seller s and traded

to buyer b. When an object os ∈ Os is not assigned to any replica, this implies the object is
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produced by seller s and destroyed. Finally, when an object is assigned to a seller s, this implies

that the object is not produced. In this way, the assignment game encodes an analogue of the

two-sided allocation problem, where each seller is initially required to produce all objects in

his potential set and objects are assigned to buyer replicas for consumption or seller replicas

to reduce required production. For buyer replicas, the payoff matrix encodes the utility that

the buyer receives from consuming an object. For seller replicas, the matrix encodes the cost

savings from not having to produce an object. The restriction in Definition 1 that ar,o = 0 if

r ∈ Ŝs and o ∈ Os′ with s 6= s′ embeds the constraint that sellers can only produce objects

from their own potential set.

The maximum value created by assignment game A can be calculated by solving the fol-

lowing linear programming problem:

V ∗(A) := max
L

∑

r∈R̂

∑

o∈O

lr,o ar,o

subject to
∑

o∈O

lr,o ≤ 1 for all r ∈ R̂

and
∑

r∈R̂

lr,o ≤ 1 for all o ∈ O.

(15)

It will be useful to define the assignment game in which a subset of replicas and a subset of

objects have been removed. For any T̂ ⊆ R̂, and K ⊆ O, let A−T̂,−K
be defined from matrix A

by removing all rows relating to replicas in T̂ and all columns relating to objects in K.14

For any replica-object assignment game A and any allocation x ∈ X, a feasible matching

L is said to be isomorphic to x if for any o ∈ O,

∑

r∈B̂b

lr,o =

{
1, if o ∈ xb
0, otherwise

for all b ∈ B and

∑

r∈Ŝs

lr,o =

{
1, if o ∈ Os \ xs
0, otherwise

for all s ∈ S.

When L is isomorphic to x, replicas of each buyer b are jointly assigned xb and replicas of each

seller s are jointly assigned Os\xs, which are the objects that s does not have to produce under

allocation x. Let L(A, x) be the subset of feasible matchings of A that are isomorphic to x.

14Notice that A−T̂,−K̂
will not necessarily satisfy Definition 1. In fact A−T̂,−K̂

is a replica-object assignment

game of a two-sided allocation problem if and only if for some I ∈ B and J ⊆ S, T̂ = Î ∪ Ĵ and K = OJ. That is,
for each buyer either none or all of his replicas are removed and for each seller either none or all of his replicas
and objects are removed. Observe however that the maximum value of any assignment game, whether or not it
satisfies Definition 1, can be computed using (15).
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Let L∗(A, x) ⊆ L(A, x) be the set of matchings that are isomorphic to x and return the

maximal value. We refer to these as the set of best isomorphic matchings of allocation x

in assignment game A. Formally, for any L ∈ L(A, x), L ∈ L∗(A, x) if for all L′ ∈ L(A, x),

∑

r∈R̂

∑

o∈O

lr,o ar,o ≥
∑

r∈R̂

∑

o∈O

l′r,o ar,o. (16)

Where there is no risk of confusion, we write Lx for a best isomorphic matching of x in A. If

L∗(A, x) contains more than one element, then Lx can be arbitrarily chosen among them. It

is also useful to define x0 to be the allocation where nothing is produced (x0b = ∅ for all b and

x0s = ∅ for all s). Let Lx0
∈ L∗(A, x0) be a best isomorphic matching of x0. Notice that Lx0

matches all replicas of each seller to an object in that seller’s potential set but leaves all buyer

replicas unmatched.

We can now formally define a matching problem:

Definition 2 (Matching Problem) A two-sided allocation problem is a matching problem if

for all (v, c) there exists a replica-object assignment game A satisfying Definition 1 such that

for any feasible allocation x ∈ X and any best isomorphic matching Lx,

ub(xb,vb) =
∑

r∈B̂b

∑

o∈O

lxr,o ar,o for all b ∈ B and

κs(xs, cs) =
∑

r∈Ŝs

∑

o∈O

[
lx

0

r,o ar,o − lxr,o ar,o
]

for all s ∈ S.

This definition of matching problems is natural insofar as all the information needed to de-

scribe an allocation, the welfare consequences of an allocation, and the resulting trade network

is encoded in a one-to-one match between agent replicas and objects in a bipartite graph. The

utility that a buyer receives from consuming a package equals the sum of the payoffs generated

from assigning that package to replicas of that buyer. Likewise, for any seller, there is an exact

correspondence between the cost for producing a package and the payoff that is generated from

objects not assigned to replicas of that seller.

In the assignment game with all agents present, a buyer’s utility and a seller’s cost function

are independent of the package assigned to other agents. In order for Definition 2 to hold,

it must also be the case that in the best isomorphic matching of x, the payoffs generated

by an assignment of a package to replicas of a buyer or a seller must be independent of the

assignments made to the replicas of the other agents. We show that this independence allows
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us to maintain a correspondence between the two-sided allocation problem and an assignment

game even when subsets of buyers and sellers are removed.

Consider a two-sided allocation problem obtained by removing a subset of buyers I ⊆

B, a subset of sellers J ⊆ S, and the objects that correspond to these sellers OJ. Let

x =
(
(xb)b∈B\I, (xs)s∈S\J

)
be an allocation in this smaller two-sided allocation problem. Let

A−Î∪Ĵ,−OJ
be a submatrix of A with the rows corresponding to replicas Î ∪ Ĵ and objects OJ

removed. Note that A−Î∪Ĵ,−OJ
continues to satisfy Definitions 1 and 2 for any allocation x. This

implies that the smaller two-sided allocation problem is a matching problem and has A−Î∪Ĵ,−OJ

as a corresponding assignment game. Let Lx ∈ L∗(A−Î∪Î,−OJ
, x) be a best isomorphic matching

of x in A−Î∪Î,−OJ
. Then, the following lemma implies that social welfare in this best isomorphic

matching is equal to the maximal welfare generated from the corresponding assignment game

up to a constant.

Lemma 1 Consider a matching problem with types (v, c) and corresponding replica-object as-

signment game A. For any subsets of agents I ⊆ B and J ⊆ S and any allocation x ∈ X

of the smaller matching problem obtained by removing these agents and their objects, let

Lx ∈ L∗(A−Î∪Ĵ,−OJ
, x) be a best isomorphic matching of x in the replica-object assignment

game A−Î∪Ĵ,−OJ
. Then,

W−I,−J(x,v, c) =
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑

o∈O

lxr,o ar,o − V ∗(A−B̂∪Ĵ,−OJ
)

and

W ∗
−I,−J = V ∗(A−Î∪Ĵ,−OJ

)− V ∗(A−B̂∪Ĵ,−OJ
).

Lemma 1 shows that there is a correspondence between W ∗ and V ∗(A) in all matching

problems even when subsets of buyers and sellers are removed. The term V ∗(A−B̂∪Ĵ,−OJ
)

changes only with the number of included sellers and not with the match because of the

restriction that all elements of A must be nonnegative. The term normalizes the output of the

assignment game so that if all objects are optimally assigned to the sellers, the value is zero.

6.2 Impossibility in Matching Problems

We now show that ex post efficient trade is impossible in all matching problems. We begin by

using Lemma 1 to derive a sufficient condition for (CC) in matching problems. We then show

that this sufficient condition holds by extending the results of Shapley (1962).
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Recall that in an efficient allocation, the trade network can be separated into components.

In all matching problems, we can define B̂(G) := ∪b∈GB̂b to be the set of replicas of buyers

in component G, Ŝ(G) := ∪s∈GŜs to be the set of replicas of sellers in component G, and

O(G) := ∪s∈S(G)Os to be the set of objects traded in component G. It is convenient to define

R̂(G) := B̂(G) ∪ Ŝ(G) to be the set of replicas of agents in component G.

For any component G in an efficient allocation, Lemma 1 implies that

∑

b∈B(G)

[W ∗ −W ∗
−b,.] =

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)],

and15

∑

s∈S(G)

[W ∗ −W ∗
.,−s] =

[ ∑

s∈S(G)

[V ∗(A)− V ∗(A−Ŝs,−Os
)]

]
−

[
V ∗(A−B̂,.

)− V ∗(A−B̂∪Ŝ(G),−O(G))

]
.

It also implies that

W ∗ −W ∗
−B(G),−S(G) = V ∗(A)− V ∗(A−R̂(G),−O(G))−

[
V ∗(A−B̂,.

)− V ∗(A−B̂∪Ŝ(G),−O(G))

]
.

Because the final terms in these two equations are the same, it follows that (CC) holds in a

matching problem if and only if

∑

b∈B̂(G)

[V ∗(A)−V ∗(A−B̂b,.
)]+

∑

s∈Ŝ(G)

[V ∗(A)−V ∗(A−Ŝs,−O
Ŝs

)] ≥ V ∗(A)−V ∗(A−R̂(G),−O(G)). (17)

We now show that (17) holds for all assignment games by generalizing the substitutes

condition of Shapley (1962). For an assignment game between replicas and objects, we say

that replicas are set substitutes if for any two disjoint subsets of replicas T̂ ⊆ R̂ and T̂′ ⊆ R̂

with T̂ ∩ T̂′ = ∅,

V ∗(A)− V ∗(A−T̂,.
) + V ∗(A)− V ∗(A−T̂′,.

) ≤ V ∗(A)− V ∗(A−T̂∪T̂′,.
). (18)

We say that any number of replicas are substitutes if for any subset of replicas T̂ ⊆ R̂,

∑

r∈T̂

[V ∗(A)− V ∗(A−r,.)] ≤ V ∗(A)− V ∗(A−T̂,.
). (19)

Likewise, objects are set substitutes if for any two disjoint subsets of objects K ⊆ O and

K′ ⊆ Ô with K ∩K′ = ∅,

V ∗(A)− V ∗(A.,−K) + V ∗(A)− V ∗(A.,−K′) ≤ V ∗(A)− V ∗(A.,−K∪K′), (20)

15Note that V ∗(A−B̂,.)− V ∗(A−B̂∪Ŝs,−Os

) is equivalent to the value of optimally assigning all objects in Os to

replicas in Ŝs. Adding this value over all sellers in S(G) gives the same value as V ∗(A−B̂,.)−V ∗(A−B̂∪Ŝ(G),−O(G)).
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and any number of objects are substitutes if for any subset of objects K ⊆ O,

∑

o∈K

[V ∗(A) − V ∗(A.,−o)] ≤ V ∗(A)− V ∗(A.,−K). (21)

In addition, replicas and objects are set complements if for any T̂ ⊆ R̂ and K ⊆ O,

V ∗(A)− V ∗(A−T̂,.
) + V ∗(A) − V ∗(A.,−K) ≥ V ∗(A)− V ∗(A−T̂,−K

). (22)

Shapley (1962) shows that in an assignment game, any two replicas or any two objects are

substitutes for each other. The following lemma generalizes this result, along with a notion of

complements, to sets:

Lemma 2 For any assignment game between replicas and objects, (i) replicas are set sub-

stitutes, (ii) any number of replicas are substitutes, (iii) objects are set substitutes, (iv) any

number of objects are substitutes, and (v) replicas and objects are set complements.

As was shown in Shapley (1962), buyer replicas and objects are complements in the assign-

ment game, and thus the sum of their marginal products is greater than the sum for the pair.

By Lemma 2, replicas of a given buyer are set substitutes and objects traded to this buyer

are set substitutes. As shown in the appendix, these two conditions are enough to show that

the marginal surplus lost from removing replicas corresponding to a buyer plus the marginal

surplus lost from removing the objects optimally matched to that buyer exceeds the surplus lost

from removing the corresponding trades. We can use this result along with a careful accounting

of matches between objects and sellers to show that ex post efficient trade is impossible in all

matching problems:

Theorem 3 Ex post efficient trade is impossible in any matching problem.

7 Matching Problems: A Characterization

We now return to the primitives of the two-sided allocation problem to answer the question:

Under what conditions on buyers’ utility functions and sellers’ cost functions is a two-sided

allocation problem a matching problem? In Section 7.1, we show that a necessary and sufficient

condition for an allocation problem to be a matching problem is that each agent’s payoff

function can be derived as the solution to an assignment game. Such a representation exists if

an agent can be decomposed into replicas and if a replica-object assignment game exists such
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that the payoff to an agent from a package of objects corresponds to the optimal solution of the

corresponding replica-object assignment game. In Section 7.2, we use this result to show that

the impossibility result holds in a variety of economically relevant settings in which agents’

payoff functions satisfy what we call rank-dependent discounts.

7.1 Decomposition

For a buyer b ∈ B, let Ab be an O × O assignment game whose rows represent O replicas of

buyer b and columns represent objects. Let V ∗(Ab) be the maximal value that can be generated

from the assignment game. Assignment game Ab is a buyer decomposition of buyer b if for

any package xb ∈ P

ub(xb,vb) = V ∗(Ab
xb
),

where Ab
xb

is defined as the submatrix of Ab containing exclusively its columns related to objects

in xb. A buyer decomposition exists if it is possible to construct an assignment game whose

maximal value coincides with the upper envelope of the buyer’s utility function for any package

of objects. Buyer b is decomposable if such a decomposition exists.16

The concept of decomposability can be defined in an almost analogous way for a seller. Let

As be a Os ×Os assignment game with maximal value V ∗(As). The assignment game As is a

seller decomposition of seller s ∈ S if for any package xs ∈ Ps

κs(xs, cs) = V ∗(As)− V ∗(As
Os\xs

),

where As
Os\xs

is defined as a submatrix of As containing exclusively the columns related to

objects in Os \ xs. A seller is decomposable if it is possible to construct an assignment game

where the joint marginal payoff of the columns referring to objects in any package xs is equal

to the (lower envelope) cost of producing that package. Seller s is decomposable if such a

decomposition exists.17

If all agents are decomposable, then all utility and cost functions can be represented by an

assignment game. It is then possible to stack these matrices on top of each other to obtain

a larger matrix that satisfies Definition 1. This implies that the two-sided allocation problem

is a matching problem. If some agent is not decomposable, then such a matrix cannot be

constructed.
16Hurwicz (1973) uses the term decomposable to refer to environments without externalities. In our setup, an

agent’s payoff function is decomposable if there are no externalities from one replica of the agent to any other.
17Notice that we have restricted the number of replicas to be equal to the maximum number of objects that

an agent can consume or produce. This is without loss of generality, as shown in Lemma 3 in the appendix.
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Theorem 4 A two-sided allocation problem is a matching problem if and only if each buyer

and seller is decomposable.

7.2 Rank-Dependent Discounts Payoff Functions

Theorem 4 states decomposability as a necessary and sufficient condition for a two-sided allo-

cation problem to be a matching problem, but leaves open the question under which conditions

an agent is decomposable. In this section, we introduce a condition on payoff functions, called

rank-dependent discounts (RDD), and show that if an agent’s payoff function exhibits

RDD, then this agent is decomposable. The family of RDD payoff functions nests a wide range

of payoff functions as special cases, including homogeneous objects, additive payoffs, unit de-

mand and unit capacities, and an additive separable version of Ausubel’s (2006) heterogeneous

commodity model.

Let {Om}m∈Mb be a partition of O and denote the number of objects in block m by Om.

For any subset of objects xm ⊆ Om, denote the object in this subset with the ith highest

stand-alone utility, ub({o},vb), as o(i)(xm). That is:

ub({o(1)(xm)},vb) ≥ ub({o(2)(xm)},vb) ≥ .. ≥ ub({o(|xm|)(xm)},vb). (23)

Also let δm = (δm,1, δm,2, .., δm,Om) be a vector of rank-specific discount parameters of dimen-

sion Om with 0 = δm,1 ≤ δm,2 ≤ · · · ≤ δm,Om .

For a block of objects Om, a buyer’s payoff function exhibits RDD if for any xm ⊆ Om,

ub(xm,vb) =

|xm|∑

i=1

max{ub({o(i)(xm)},vb)− δm,i, 0}. (24)

Rank-dependent discounts allow individuals to have arbitrary stand-alone utilities but impose

restrictions on the utility function as larger packages are assembled. As one example, recall

the situation in Section 2, where David initially has preferences over objects A and B, with

stand-alone utilities 9 and 5 and a utility for package AB of 12. These initial preferences exhibit

RDD because for package AB, ub({o(1)(AB)},vb) = 9, ub({o(2)(AB)},vb) = 5, and δm,2 = 2.

If there were a third object C with stand-alone utility of 7, then in order to exhibit RDD on

ABC, David’s utility for the package consisting of A and C would need to be 14 and his utility

for the package consisting of B and C would need to be 10.

Definition 3 A buyer’s utility function exhibits RDD if there exists a partition {Om}m∈Mb
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and a collection of discount vectors δ = {δ1, . . . , δMb} such that for any x ∈ P,

ub(x,vb) =
∑

m∈Mb

|xm|∑

i=1

max{ub({o(i)(xm)},vb)− δm,i, 0}, (25)

where xm := x ∩Om.

RDD requires that a buyer’s utility function be additive across blocks and that, within each

block, the value of a package be equal to the sum of the stand-alone utilities minus a discount

that only depends on the number of units the package contains. These requirements are met in

the homogeneous objects case with decreasing marginal utility since the stand-alone cost of all

objects is the same and the addition of an extra unit has a fixed discount. The requirements

is also satisfied in the case of additive utility because each object constitutes a separate block.

Analogous to the buyers, let {Om,s}m∈Ms be a partition of objects Os and denote the

number of objects in block m by Om,s. For any subset of objects xm ⊆ Om,s, denote the

object in this subset with the ith lowest stand-alone cost, κs({o}, cs), as o(i)(xm). Also let

δm = (δm,1, δm,2, .., δm,Om,s) be a vector of rank-specific discount parameters of dimension

Om,s with 0 = δm,1 ≤ δm,2 ≤ · · · ≤ δm,Om,s .

Definition 4 A seller’s cost function exhibits RDD if there exists a partition {Om,s}m∈Ms and

vector of discounts δ = {δ1, . . . , δMs} such that for any x ∈ Ps,

κs(x, cs) =
∑

m∈Ms

|xm|∑

i=1

κs({o(i)(xm)}, cs) + δm,i, (26)

where xm := x ∩Om,s.

As with the buyer, a seller’s payoff exhibits RDD if there exists a partition of the seller’s

potential set where costs are additive across blocks and, within each block, the cost of producing

a package is equal to the sum of the stand-alone utilities plus a discount that only depends on

the number of units the package contains.18 Such preferences may represent a situation where a

seller has M s production lines or factories and each production facility produces homogeneous

objects.

The family of RDD payoff functions nests a wide range of payoff functions as special cases.

As mentioned earlier, if all stand-alone utilities (costs) are the same, then the buyer (seller)

18Note that the seller’s problem is the same as the buyers problem if one views the seller as initially owning
his potential set and selling the ones he likes least first.

26



considers the objects to be homogeneous. If the discount parameters are very large then buyers

and sellers are unit traders in the sense that they efficiently consume, respectively produce,

packages containing at most one unit.19

The assignment game of Shapley and Shubik (1972) is a special case of this model because

buyers are unit traders and the potential set of each seller contains exactly one object (Os = 1

for all s). In contrast, if the discount parameters are zero, then the agent has additive payoffs.

Ausubel (2006) studies a model in which the set of objects is partitioned into commodities,

with each available in multiple identical units. The version of that model in which payoffs are

additively separable across commodities ensures that all payoff functions exhibit RDD.

The following proposition shows that the general nature of RDD payoff functions allows us

to classify various well-known models as matching problems.

Proposition 2 An agent is decomposable if his payoff function exhibits RDD.

Corollary 1 Any two-sided allocation problem in which all agents’ payoff functions exhibit

RDD is a matching problem.

An immediate implication of Corollary 1 is that ex post efficient trade is impossible in any

two-sided allocation problem in which all payoff functions exhibit RDD. Because decompos-

ability is determined at the individual level, Corollary 1 allows us to derive the impossibility

theorem for setups in which agents have different payoff functions as long as all of them ex-

hibit RDD. Thus, our results can be applied to settings in which buyers and sellers have very

different characteristics.

7.3 Decomposability and Substitutes Preferences

In all the applications introduced above, objects are always substitutes for all buyers and all

sellers. This is not a coincidence as the following proposition shows: An agent can only be

decomposable if he perceives objects are as substitutes.

For a buyer b consuming a package x ∈ P, two disjoint subsets of that package y, z ⊆ x

with y ∩ z = ∅ are substitutes for each other if

ub(x,vb)− ub(x \ y,vb) ≤ ub(x \ z,vb)− ub(x \ (y ∪ z),vb),

19One-to-one allocation problems studied in Section 5 can be mapped into a matching problem with RDD
payoffs by first determining the package that maximizes the joint surplus of each pair and then redefining cost
and utility functions over these efficient packages. Agents in this transformed problem are unit traders.
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that is, if the marginal utility of y weakly increases when z is removed. For a seller s producing

a package x ∈ Ps, two disjoint subsets of that package y, z ⊆ x with y ∩ z = ∅ are substitutes

for each other if the marginal cost of y weakly decreases when z is removed:

κs(x, cs)− κs(x \ y, cs) ≥ κs(x \ z, cs)− κs(x \ (y ∪ z), cs).

Proposition 3 An agent is decomposable only if any two disjoint subsets of any package are

substitutes for one another.

The intuition is clear. From Shapley (1962), we know that any two objects in a replica-

object assignment game are substitutes for each other, which, by Lemma 2, extends to sets of

objects. Because an assignment game does not allow any complementarity between objects,

the payoff function in a two-sided allocation problem also cannot exhibit complementarity if it

is to be decomposable.

8 Conclusion

We establish the impossibility of ex post efficient trade for general environments with buyers

and sellers whose types are multi-dimensional. We develop a new component complements

condition that is sufficient for all mechanisms that are dominant strategy incentive compatible

and ex post individually rational to never run a surplus and least efficient buyer and seller

types exist. When the condition holds strictly, all efficient incentive compatible mechanisms

run a deficit.

For assignment games, which are two-sided allocation problems with one-to-one matching,

a result due to Shapley (1962) establishes that buyers and sellers are complements. As this is

sufficient for the component complements condition to hold, it implies the impossibility result

for all one-to-one allocation problems. We generalize the impossibility result to setups in which

trades are not necessarily one-to-one by first answering a question that is of independent inter-

est: When is a two-sided allocation problem a matching problem? We show that a two-sided

allocation problem is a matching problem – in the sense that the efficient allocation corresponds

an optimal matching in an assignment game – if and only if each agent’s payoff function can be

decomposed. Just like in Hurwicz (1973), decomposability means that there are no externali-

ties, with the difference to Hurwicz’s setup being that here there are no externalities between

replicas of the same agent. The impossibility result then generalizes to all two-sided allocation

problems that are matching problems, that is, to all setups in which agents are decomposable.
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We also introduce a new family of utility and cost functions, called rank-dependent discounts

(RDD) payoff functions and show that RDD is sufficient for decomposability. RDD utility and

cost functions nest a wide range of payoff functions as special cases, including homogeneous

objects, additive payoffs, unit demands and supplies, and an additively separable version of the

heterogeneous commodities model of Ausubel (2006).

Our research opens up a number of avenues for future study. While we have partially classi-

fied the set of many-to-many environments that can be mapped into matching problems, it may

be useful to explore alternative conditions on preferences to study further the correspondence

between many-to-many allocation problems and matching problems. RDD and decomposability

are likely to prove useful in a variety of other contexts and applications. Decomposability makes

the derivation of the efficient allocation computationally tractable. Because it is a condition

on individual agents’ payoffs, it can be verified without having to account for the interaction

between different agents whose payoff functions may vary considerably. Lastly, decomposability

and RDD may also be a necessary condition for efficiency to be achievable via clock auctions,

which have a number of advantages over direct mechanisms.
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A Appendix: Proofs

Proof of Lemma 1: By Definition 2,

ub(xb,vb) =
∑

r∈B̂b

∑

o∈O

lxr,o ar,o for all b ∈ B \ I, and

κs(xs, cs) =
∑

r∈Ŝs

∑

o∈O

[lx
0

r,o ar,o − lxr,o ar,o] for all s ∈ S \ J,

where x0 is the allocation that leaves all remaining agents with an empty package (x0b = ∅

for all b ∈ B \ I and x0s = ∅ for all s ∈ S \ J) and Lx0
is a best isomorphic matching of that

allocation in A−Î∪Ĵ,−OJ
. From (4) recall that social welfare W−I,−J(x,v, c) is

W−I,−J(x,v, c) =
∑

b∈B\I

ub(xb,vb)−
∑

s∈S\J

κs(xs, cs).

Combining these two results yields

W−I,−J(x,v, c) =
∑

b∈B\I

∑

r∈B̂b

∑

o∈O

lxr,o ar,o −
∑

s∈S\J

∑

r∈Ŝs

∑

o∈O

[lx
0

r,o ar,o − lxr,o ar,o]

=
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑

o∈O

lxr,o ar,o −
∑

r∈Ŝ\Ĵ

∑

o∈O

lx
0

r,o ar,o.

Recalling that L0 optimally matches the replicas of each seller s with the objects in Os,

∑

r∈Ŝ\Ĵ

∑

o∈O

lx
0

r,o ar,o = V ∗(A−B̂∪Ĵ,−O
Ĵ

) for any J ⊆ S.

Combining the last two definitions completes the proof of the first part of the statement,

W−I,−J(x,v, c) =
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑

o∈O

lxr,o ar,o − V ∗(A−B̂∪Ĵ,−O
Ĵ

) � (27)

To complete the proof, it remains to show that Lx∗
is an optimal matching of A−Î∪Ĵ,−OJ

.

To see this, consider any feasible matching of A−Î∪Ĵ,−OJ
. Because it assigns each object at

most once, it is an isomorphic matching of some allocation. The output it produces is therefore

at most the output produced by a best isomorphic matching of that allocation. By (27) and

because x∗ is efficient, this cannot exceed the output created by Lx∗
, which is equal to W ∗

−I,−J
+

V ∗(A−B̂∪Ĵ,−OJ
). The latter is therefore an optimal matching of A−Î∪Ĵ,−OJ

. Consequently,
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑
o∈O lx

∗

r,o ar,o = V ∗(A−Î∪Ĵ,−OJ
) and

W ∗
−I,−J = V ∗(A−Î∪Ĵ,−OJ

)− V ∗(A−B̂∪Ĵ,−OJ
). �
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Proof of Lemma 2: We begin by proving part (ii), showing that (19) holds. Observe first

that (19) holds with an equality if T̂ ≤ 1, so we assume that T̂ ≥ 2. Label the elements of T̂

such that T̂ = {r1, ..., rT̂ } and define T̂n := {r1, ..., rn} for any n ∈ {1, ..., T̂ } as well as T̂0 := ∅.

By Theorem 2, for any m ∈ {2, ..., T̂ } and n ∈ {1, ...,m−1}, rm and rn are substitutes for each

other in the assignment game defined by matrix A−T̂n−1,.
. That is, for any m ∈ {2, ..., T̂ } and

n ∈ {1, ...,m − 1},

V ∗(A−T̂n−1,.
)−V ∗(A−T̂n−1∪{rm},.)+V ∗(A−T̂n−1,.

)−V ∗(A−T̂n,.
) ≤ V ∗(A−T̂n−1,.

)−V ∗(A−T̂n∪{rm},.),

which can be rearranged as

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n−1∪{rm},.) ≤ V ∗(A−T̂n,.

)− V ∗(A−T̂n∪{rm},.). (28)

Evaluating (28) at n = 1, ...,m − 1 gives us a series of m− 1 inequalities of the form

V ∗(A)− V ∗(A−rm,.) ≤ V ∗(A−r1,.)− V ∗(A−{r1,rm},.)

V ∗(A−r1,.)− V ∗(A−{r1,rm},.) ≤ V ∗(A−{r1,r2},.)− V ∗(A−{r1,r2,rm},.)

...

V ∗(A−T̂m−2,.
)− V ∗(A−T̂m−2∪{rm},.) ≤ V ∗(A−T̂m−1,.

)− V ∗(A−T̂m,.
),

which implies

V ∗(A) − V ∗(A−rm,.) ≤ V ∗(A−T̂m−1,.
)− V ∗(A−T̂m,.

). (29)

Because (28) holds for any m ∈ {2, ..., T̂ }, so does (29). When m = 1, T̂m−1 = T̂0 ≡ ∅, in

which case (29) is satisfied with an equality. Therefore (29) implies

T̂∑

m=1

[V ∗(A)− V ∗(A−rm,.)] ≤
T̂∑

m=1

[V ∗(A−T̂m−1,.
)− V ∗(A−T̂m,.

)]

= V ∗(A−T̂0,.
)− V ∗(A−T̂

T̂
,.
)

= V ∗(A)− V ∗(A−T̂,.
),

where the first equality expands the sum and cancels terms and the final equality uses T̂0 ≡ ∅

and T̂
T̂
≡ T̂. This completes the proof that (19) holds and so completes the proof of part (ii).

�

We now turn to the proof of part (i), showing that (18) holds. Similar to the case above,

(18) holds with an equality if either T̂ = ∅ or T̂′ = ∅, so we focus on the case in which both
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subsets contain at least one element. As before, let T̂n := {r1, ..., rn} for any n ∈ {1, ..., T̂ }

and, analogously, let T̂′
m := {r′1, ..., r

′
m} for any m ∈ {1, ..., T̂ ′}. Define T̂0 := ∅ and T̂′

0 := ∅.

By Theorem 2, for any n ∈ {1, ..., T̂ } and m ∈ {1, ..., T̂ ′}, rn and r′m are substitutes for each

other in the assignment game defined by matrix A−T̂n−1∪T̂′
m−1,.

. That is, for any n ∈ {1, ..., T̂ }

and m ∈ {1, ..., T̂ ′},

V ∗(A−T̂n−1∪T̂′
m−1,.

)− V ∗(A−T̂n∪T̂′
m−1,.

) + V ∗(A−T̂n−1∪T̂′
m−1,.

)− V ∗(A−T̂n−1∪T̂′
m,.

)

≤ V ∗(A−T̂n−1∪T̂′
m−1,.

)− V ∗(A−T̂n∪T̂′
m,.

).

By rearranging the above inequality we obtain

V ∗(A−T̂n−1∪T̂′
m−1,.

)− V ∗(A−T̂n∪T̂′
m−1,.

) ≤ V ∗(A−T̂n−1∪T̂′
m,.

)− V ∗(A−T̂n∪T̂′
m,.

). (30)

By an analogous argument to the one developed in the proof of part (ii), keeping n fixed and

invoking (30) for each possible value of m between 1 and T̂ ′ yields a series of T̂ ′ inequalities

such that the right side of each is equal to the left side of the next. The left side of the first

one must therefore be weakly smaller than the right side of the last one, that is

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n,.

) ≤ V ∗(A−T̂n−1∪T̂′,.
)− V ∗(A−T̂n∪T̂′,.

),

which is equivalent to

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n−1∪T̂′,.

) ≤ V ∗(A−T̂n,.
)− V ∗(A−T̂n∪T̂′,.

).

Because this inequality holds for any n ∈ {1, ..., T̂ }, analogous reasoning to above yields

V ∗(A)− V ∗(A−T̂′,.
) ≤ V ∗(A−T̂,.

)− V ∗(A−T̂∪T̂′,.
),

which is equivalent to (18) and completes the proof of part (i). �

By the symmetry of assignment games, the proofs of parts (iii) and (iv) are analogous. �

We conclude with the proof of part (v), showing that (22) holds. Similarly to the proofs

of parts (i) and (ii), (22) holds with an equality if either T̂ = ∅ or K = ∅, hence we focus on

the case in which both subsets contain at least one element. As before, let T̂n := {r1, ..., rn}

for any n ∈ {1, ..., T̂ } and, analogously, let Km := {o1, ..., om} for any m ∈ {1, ...,K}. Define

T̂0 := ∅ and K0 := ∅.

By Theorem 2, for any n ∈ {1, ..., T̂ } andm ∈ {1, ...,K}, rn and om are complements to each

other in the assignment game defined by matrix A−T̂n−1,−Km−1
. That is, for any n ∈ {1, ..., T̂ }

32



and m ∈ {1, ...,K},

V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km−1

) + V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n−1,−Km

)

≤ V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km

).

By rearranging the above inequality we obtain

V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km−1

) ≤ V ∗(A−T̂n−1,−Km
)− V ∗(A−T̂n,−Km

). (31)

The remainder of the proof of part (v) is analogous to the proof of part (ii) starting after (28).

�

Proof of Theorem 3: We have established in the main text that (17) is equivalent to (CC) and

therefore a sufficient condition for the impossibility of ex post efficient trade. The remainder

of the proof is therefore devoted to proving that (17) holds for any replica-object assignment

game A.

Let L∗ be an optimal matching of A such that

(i)
∑

r∈R̂ l∗r,o = 1 for all o ∈ O, and

(ii) l∗r,o = 0 for all pairs (r, o) such that r ∈ Ŝs and o ∈ Os′ where s, s′ ∈ S with s 6= s′

An optimal matching satisfying (i) and (ii) always exists: An optimal matching satisfying (i),

which states no object is left unmatched, always exists because objects are on the short side

and the elements of A are nonnegative. Moreover, by Definition 1, ar,o = 0 if r ∈ Ŝs and o ∈ Os′

with s 6= s′. Consequently, one can always find an optimal matching that only matches seller

replicas with objects that belong to their seller’s potential set, as required by (ii).

For all o ∈ O, let s(o) ∈ S be such that o ∈ Os(o) and let r∗(o) ∈ B̂ ∪ {s(o)} be the replica

that L∗ matches with object o. Then l∗
r∗(o),o = 1 for all o ∈ O and l∗r,o = 0 for all (r, o) with

r 6= r∗(o). It follows that

V ∗(A) =
∑

r∈R̂

∑

o∈O

l∗r,o ar,o =
∑

o∈O

ar∗(o),o.

Let Õs := {o ∈ Os | r∗(o) ∈ B̂} be the subset of objects in seller s’s potential set that are

matched with a buyer replica. Then Os \Õs represents the set of objects matched with replicas

of s. Let Õ(G) := ∪s∈S(G)Õs = {o ∈ O(G) | r∗(o) ∈ B̂(G)} be the set of objects matched to a

replica of a buyer in component G.
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Theorem 2 implies that the marginal product of each replica and each object exceeds the

marginal product generated on the link. Adding all links between buyer replicas and objects

in a given component G, this implies that:

∑

o∈Õ(G)

[V ∗(A)− V ∗(A−r∗(o),.) + V ∗(A)− V ∗(A.,−o)] ≥
∑

o∈Õ(G)

[V ∗(A)− V ∗(A−r∗(o),−o)]. (32)

Because o and r∗(o) are optimally matched together, removing that pair does not affect the

rest of the assignment game. Consequently, its marginal product is V ∗(A)− V ∗(A−r∗(o),−o) =

ar∗(o),o, and the right side of (32) is equal to
∑

o∈Õ(G)
ar∗(o),o.

Notice next that

∑

o∈Õ(G)

[V ∗(A)− V ∗(A−r∗(o),.)] =
∑

b̂∈B̂(G)

[V ∗(A)− V ∗(A−b̂,.
)]

because each object in Õ(G) is matched to a buyer-replica of component G and each one of

the latter is either unmatched or matched to an object in Õ(G). By part (ii) of Lemma 2, for

any b ∈ B(G) we have

V ∗(A)− V ∗(A−B̂b,.
) ≥

∑

b̂∈B̂b

[V ∗(A)− V ∗(A−b̂,.
)],

while part (iv) of Lemma 2 implies for any s ∈ S(G)

V ∗(A)− V ∗(A
.,−Õs

) ≥
∑

ô∈Õs

[V ∗(A)− V ∗(A.,−o)].

Adding up these terms over the buyers and sellers in component G yields

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)] ≥

∑

b̂∈B̂(G)

[V ∗(A)− V ∗(A−b̂,.
)]

and
∑

s∈S(G)

[V ∗(A)− V ∗(A
.,−Õs

)] ≥
∑

o∈Õ(G)

[V ∗(A)− V ∗(A.,−o)].

Using these results along with (32) yields

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑

s∈S(G)

[V ∗(A)− V ∗(A
.,−Õs

)] ≥
∑

o∈Õ(G)

ar∗(o),o. (33)

Removing replicas cannot increase the value created by an assignment game, that is,

V ∗(A
.,−Õs

) ≥ V ∗(A
−Ŝs,−Õs

). Combined with (33), this yields

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑

s∈S(G)

[V ∗(A)− V ∗(A
−Ŝs,−Õs

)] ≥
∑

o∈Õ(G)

ar∗(o),o. (34)
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We next look at the marginal product of objects in O(G) \ Õ(G). Each object in Os \ Õs

is matched with a replica of s and each replica of s is either unmatched or matched with an

object in Os \ Õs, therefore for any s ∈ S, removing Ŝs and Os \ Õs implies that unmatched

replicas and matched pairs are removed, hence for all s ∈ S,

V ∗(A)− V ∗(A
−Ŝs,−Os\Õs

) =
∑

o∈Os\Õs

ar∗(o),o.

Using this result in conjunction with (34) yields

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑

s∈S(G)

[
V ∗(A)− V ∗(A

−Ŝs,−Õs
) + V ∗(A)− V ∗(A

−Ŝs,−Os\Õs
)
]

≥
∑

o∈O(G)

ar∗(o),o.

We now invoke part (iii) of Lemma 2 to obtain, for all s ∈ S,

V ∗(A)− V ∗(A−Ŝs,−Os
) ≥ V ∗(A)− V ∗(A

−Ŝs,−Õs
) + V ∗(A)− V ∗(A

−Ŝs,−Os\Õs
).

and thus

∑

b∈B(G)

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑

s∈S(G)

[V ∗(A)− V ∗(A−Ŝs,−Os
)] ≥

∑

o∈O(G)

ar∗(o),o.

Observe finally that all objects in O(G) are matched to a replica in R̂(G) and all replicas

in R̂(G) are either unmatched or matched to an object in O(G). Removing R̂(G) and O(G)

means removing matched pairs and unmatched replicas so

V ∗ (A)− V ∗
(
A−R̂(G),−O(G)

)
=

∑

o∈O(G)

ar∗(o),o.

Combining the last two results yields (17), which completes the proof. �

As mentioned in footnote 17, the following lemma shows that restricting attention to de-

compositions with a finite number of buyer and seller replicas is without loss of generality.

Lemma 3 A buyer b who can be decomposed into any number of replicas can also be decomposed

into O replicas. A seller s who can be decomposed into any number of replicas can also be

decomposed into Os replicas.

Proof of Lemma 3: Consider a buyer b and a set of objects O. Let Ab be a decomposition

of b containing any number of rows. B̂b is the set of replicas of b, each represented as a row of
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Ab. Therefore, Ab has B̂b ≡ |B̂b| rows and O columns. We need to show that for any number

B̂b, there exists an O × O matrix that constitutes a decomposition of b. The case for a seller

is analogous except that the decomposition only has Os columns. Hence we only prove the

lemma for a buyer.

If B̂b ≤ O, then it is possible to add O − B̂b rows of zeroes without changing the problem,

so any buyer that can be decomposed into B̂b ≤ O replicas can also be decomposed into O

replicas.

If B̂b > O, then objects are on the short side and any optimal matching will leave at least

B̂b − O replicas unmatched. Let B̂′
b ⊆ B̂b be a subset containing B̂b − O replicas that are

unmatched in an optimal matching of Ab. Let Âb := Ab

−B̂′
b
,.
denote the submatrix of Ab where

the rows corresponding to replicas in B̂′
b have been removed. Because Âb contains O rows, the

proof is complete if the following can be shown:

V ∗(Ab
xb
) = V ∗(Âb

xb
) for all xb ∈ P.

By Lemma 2(v), any subset of replicas and any subset of objects are complements to each

other in assignment game Ab. As B̂′
b ⊆ B̂b and O \ xb ⊆ O for any xb ∈ P, Lemma 2(v) implies

V ∗(Ab)− V ∗(Âb) + V ∗(Ab)− V ∗(Ab
xb
) ≥ V ∗(Ab)− V ∗(Âb

xb
),

which is equivalent to

V ∗(Ab)− V ∗(Âb) ≥ V ∗(Ab
xb
)− V ∗(Âb

xb
).

Because the replicas in B̂′
b are optimally unmatched in Ab, V ∗(Ab) = V ∗(Âb) and the left side of

the above inequality is equal to zero. Because removing rows always weakly reduces the value

of an assignment game, the right side is also equal to zero. It follows that V ∗(Ab
xb
) = V ∗(Âb

xb
)

for all xb ∈ P, and the proof is complete. �

Proof of Theorem 4: (If) Suppose that the allocation problem is such that all buyers and

all sellers are decomposable. Then it is possible to construct a (BO + O) × O matrix A such
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that the rows devoted to replicas of each agent are those of his decomposition. That is,

A :=




Ab1

Ab2

Ab3

...
AbB

As1 0 0 · · · 0
0 As2 0 · · · 0
0 0 As3 · · · 0
...

...
...

. . .
...

0 0 0 · · · AsS




,

where Abi is the decomposition of the ith buyer and Asj the decomposition of the jth seller.

Observe that A satisfies Definition 1 by construction. Consider a feasible allocation x and

recall that L(A, x) is the set of feasible matchings of A that are isomorphic to x. Notice that

the elements of L(A, x) only differ in the way they assign objects across replicas of the same

individual. A best isomorphic matching of x in A, Lx, is one that, for each buyer b assigns the

objects in xb to replicas in B̂b optimally and for each seller s assigns the objects in Os \ xb to

replicas in Ŝs optimally. (If this were not the case, then another isomorphic matching would

exist that produces a larger value, contradicting that Lx is a best isomorphic matching.) This

implies the first equality signs in each of the following two lines.

V ∗(Ab
xb
) =

∑

r∈B̂b

∑

o∈xb

lxr,o ar,o =
∑

r∈B̂b

∑

o∈O

lxr,o ar,o for all b ∈ B and

V ∗(As
Os\xs

) =
∑

r∈Ŝs

∑

o∈Os\xs

lxr,o ar,o =
∑

r∈Ŝs

∑

o∈O

lxr,o ar,o for all s ∈ S.

Each of the second two equality signs derives from the fact that Lx is isomorphic to x, which

means (i) lxr,o = 0 for all r ∈ B̂b and o ∈ O such that o /∈ xb and (ii) lxr,o = 0 for all r ∈ Ŝs and

o ∈ O such that o /∈ Os \ xs.

Because this is true for any feasible allocation, it also holds for the empty allocation x0 and

its best isomorphic matching Lx0
:

V ∗(As) =
∑

r∈Ŝs

∑

o∈Os

lx
0

r,o ar,o =
∑

r∈Ŝs

∑

o∈O

lx
0

r,o ar,o for all s ∈ S.

Combining these results with the assumption that all agents are decomposable yields

ub(xb,vb) = V ∗(Ab
xb
) =

∑

r∈B̂b

∑

o∈O

lxr,o ar,o for all b ∈ B and

κs(xs, cs) = V ∗(As)− V ∗(As
Os\xs

) =
∑

r∈Ŝs

∑

o∈O

[lx
0

r,o ar,o − lxr,o ar,o] for all s ∈ S.
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That is, Definition 2 is satisfied, and so the allocation problem is a matching problem. �

(Only If) Suppose that a buyer b is not decomposable. Then for any matrix Ab with O

replicas of b in its rows and O objects in its columns there exists a feasible allocation x such

that ub(xb,vb) 6= V ∗(Ab
xb
). Additionally, for any (BO+O)×O replica-object assignment game

A where the replicas of b are represented by the rows of Ab, a best isomorphic matching Lx of

x, optimally assigns objects in xb to replicas of b. That is,

∑

r∈B̂b

∑

o∈O

lxr,o ar,o =
∑

r∈B̂b

∑

o∈xb

lxr,o ar,o = V ∗(Ab
xb
) 6= ub(xb,vb).

Consequently the allocation problem is not a matching problem.

Likewise, if a seller s is not decomposable, then for any Os × Os matrix As there exists

a feasible allocation x such that κs(xs, cs) 6= V ∗(As) − V ∗(As
Os\xs

). Additionally, for any

(BO + O) × O replica-object assignment game A where the replicas of s are represented by

the rows of As, Lx, a best isomorphic matching of x, optimally assigns objects in Os \ xs to

replicas of s. That is,

∑

r∈Ŝs

∑

o∈O

lx
0

r,o ar,o−lxr,o ar,o =
∑

r∈Ŝs

∑

o∈Os

lx
0

r,o ar,o−
∑

r∈Ŝs

∑

o∈Os\xs

lxr,o ar,o = V ∗(As)−V ∗(Ab
Os\xs

) 6= κs(xs, cs),

Thus the allocation problem is not a matching problem. �

Proof of Proposition 2: (Buyers) Let b be a buyer whose payoff function exhibits RDD.

Then there exists a partition {Om}m∈Mb of O such thatOm = {o(1)(Om), o(2)(Om), ..., o(Om)(Om)}

for all m ∈ Mb. For any package x ∈ P, recall that xm ≡ x ∩ Om and let v(i)(xm) :=

ub({o(i)(xm)},vb) be the ith highest stand-alone utility among objects in xm. For all m ∈ Mb,

define

Am :=




v(1)(Om) v(2)(Om) ... v(Om)(Om)

max{v(1)(Om)− δm,2, 0} max{v(2)(Om)− δm,2, 0} ... max{v(Om)(Om)− δm,2, 0}
...

...
. . .

...
max{v(1)(Om)− δm,O, 0} max{v(2)(Om)− δm,O, 0} ... max{v(Om)(Om)− δm,O, 0}




and let

A :=




Am1 0 · · · 0
0 Am2 · · · 0
...

...
. . .

...
0 0 · · · Am

Mb


 .

We prove that b is decomposable by showing that A constitutes a decomposition of b. Because

all other elements are zeroes, for any x ∈ P, the value of Ax (which as may be recalled is the
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submatrix of A containing exclusively its columns related to objects in x) is maximized by

separately maximizing the values of all submatrices Am
xm

. That is,

V ∗(Ax) =
∑

m∈Mb

V ∗(Am
xm

).

In order to complete the proof, it remains to show that

V ∗(Am
xm

) =

|xm|∑

i=1

max{ub({o(i)(xm)},vb)− δm,i, 0} for all m ∈ M
b and all x ∈ P.

For some m ∈ Mb and some x ∈ P, consider

Am
xm

=




v(1)(xm) v(2)(xm) ... v(|xm|)(xm)

max{v(1)(xm)− δm,2, 0} max{v(2)(xm)− δm,2, 0} ... max{v(|xm|)(xm)− δm,2, 0}
...

...
. . .

...
max{v(1)(xm)− δm,|x|, 0} max{v(2)(xm)− δm,|x|, 0} ... max{v(|xm|)(xm)− δm,|x|, 0}

...
...

. . .
...

max{v(1)(xm)− δm,Om, 0} max{v(2)(xm)− δm,Om, 0} ... max{v(|xm|)(xm)− δm,Om , 0}




.

Because the discount parameters are nondecreasing (δm,i ≤ δm,j for i < j), the lastO−|xm| rows

of Axm are optimally unmatched. Additionally, the max function implies that, for i = 1, ..., |xm|,

the ith row of Am
xm

be optimally matched with the ith column. In this way, the highest value

is matched with the lowest discount, then the second-highest value with the second-lowest

discount, and so on as long as the next value is greater than or equal to the next discount. It is

easy to see that this is optimal once one notices that the problem is isomorphic to the problem

of a Walrasian auctioneer facing unit demand buyers with values v(1)(xm), ..., v(1)(|xm|) and

unit supply sellers with costs δm,1, ..., δm,Om. It follows that

V ∗(Am
xm

) =

|xm|∑

i=1

max{v(i)(xm)− δm,i, 0} ≡

|xm|∑

i=1

max{ub({o(i)(xm)},vb)− δm,i, 0}). �

(Sellers) Let s be a seller whose payoff function exhibits RDD. Then there exists a partition

{Om,s}m∈Ms of Os such that Om,s = {o(1)(Om,s), o(2)(Om,s), ..., o(Om,s)(Om,s)} for all m ∈ Ms.

For any package x ∈ Ps, recall that xm ≡ x ∩ Om,s and let κ(i)(xm) := κs({o(i)(xm)}, cs) be

the ith lowest stand-alone cost among objects in xm. For all m ∈ Ms, define

Am :=




κ(1)(Om) κ(2)(Om) ... κ(Om)(Om)

κ(1)(Om) + δm,2 κ(2)(Om) + δm,2 ... κ(Om)(Om)− δm,2
...

...
. . .

...
κ(1)(Om)− δm,O κ(2)(Om)− δm,O ... κ(Om)(Om)− δm,O
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and let

A :=




Am1 0 · · · 0
0 Am2 · · · 0
...

...
. . .

...
0 0 · · · AmMs


 .

For any m ∈ Ms, consider

Am
Om,s\xm

=




κ(1)(Om \ xm) κ(2)(Om \ xm) ... κ(Om−|xm|)(Om \ xm)

κ(1)(Om \ xm) + δm,2 κ(2)(Om \ xm) + δm,2 ... κ(Om−|xm|)(Om \ xm)− δm,2
...

...
. . .

...
κ(1)(Om \ xm) + δm,Om,s κ(2)(Om \ xm) + δm,Om,s ... κ(Om−|xm|)(Om \ xm) + δm,Om,s


 ,

the matrix formed by removing all columns related to an object in xm from Am. Because the

discount parameters are nondecreasing (δm,i ≤ δm,j for i < j), the first |xm| rows of Am
Om,s\xm

optimally remain unmatched. Any assignment that matches each of the remaining Om,s−|xm|

rows to one of the Om,s − |xm| columns produces the same value and is therefore optimal. It

follows that

V ∗(Am
Om,s\xm

) =

Om−|xm|∑

i=1

κ(i)(Om\xm) +

Om∑

i=|xm+1|

δm,i for all m ∈ M
s and all x ∈ Ps.

Because all other elements are zeroes, for any x ∈ Ps, the value of AOs\x is maximized by

separately maximizing the values of all submatrices Am
Om,s\xm

. That is,

V ∗(AOs\x) =
∑

m∈Ms

V ∗(Am
Om,s\xm

) =
∑

m∈Ms



Om−|xm|∑

i=1

κ(i)(Om\xm) +

Om∑

i=|xm|+1

δm,i


 for all x ∈ Ps.

It follows that, for all x ∈ Ps,

V ∗(A)− V ∗(AOs\x) =
∑

m∈Ms




Om∑

i=1

κ(i)(Om) +
Om∑

i=1

δm,i −

Om−|xm|∑

i=1

κ(i)(Om\xm) −
Om∑

i=|xm|+1

δm,i




=
∑

m∈Ms

|xm|∑

i=1

[κ(i)(xm) + δm,i]

≡
∑

m∈Ms

|xm|∑

i=1

[κs(o(i)(xm), cs) + δm,i]

= κs(x, cs). �

Proof of Proposition 3: (Buyers) Consider a buyer b consuming package x ∈ P whose

utility function is such that y and z with y, z ⊆ x and y∩ z = ∅ are strict complements to each
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other. That is,

ub(x,vb)− ub(x \ y,vb) > ub(x \ z,vb)− ub(x \ (y ∪ z),vb).

Suppose b is decomposable and let A be a decomposition. Writing Ã := Ax (the matrix

containing only those columns of A that correspond to an object in x) for ease of notation, the

above inequality is equivalent to

V ∗(Ã)− V ∗(Ã.,−y) > V ∗(Ã.,−z)− V ∗(Ã.,−(y∪z)),

The latter inequality states that subsets of objects y and z are complements to each other in

assignment game Ã, which contradicts part (iii) of Lemma 2. �

(Sellers) Consider a seller s producing package x ∈ Ps and whose cost function is such that

y, z ⊆ x with y ∩ z = ∅ are strict complements to each other. Then

κs(x, cs)− κs(x \ ys, cs) < κs(x \ zs, cs)− κs(x \ (y ∪ z), cs).

Suppose s is decomposable and let A be a decomposition. Writing x̃ := x \ (y ∪ z) and

Ã := AOs\x̃, the above inequality is equivalent to

(V ∗(A)− V ∗(Ã.,−(y∪z)))− (V ∗(A)− V ∗(Ã.,−z)) < (V ∗(A)− V ∗(Ã.,−y))− (V ∗(A)− V ∗(Ã))

⇔ V ∗(Ã.,−z)− V ∗(Ã.,−(y∪z)) > V ∗(Ã)− V ∗(Ã.,−y).

The latter inequality states that subsets of objects y and z are complements to each other in

assignment game Ã, which contradicts part (iii) of Lemma 2. �

B Extension to Bayesian Mechanisms

For the purposes of this section, we assume that the types vb and cs are independently dis-

tributed across agents according to a probability measure with full support on Vb and Cs,

respectively.

We introduce two additional conditions that allow us to extend Theorem 1 to Bayesian

mechanisms. The mechanism (χ, tβ, tσ) is Bayesian incentive compatible (BIC) if for all

b and vb,

Ev−b,c

[
ub(χ(v, c),vb)− tβb (v, c)

]
= sup

v̂b

{
Ev−b,c

[
ub(χ(v̂b,v−b, c),vb)− tβb (v̂b,v−b, c)

]}
,
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and for all s and cs,

Ev,c−s
[tσs (v, c)− κs(χ(v, c), cs)] = sup

ĉs

{
Ev,c−s

[tσs (v, ĉs, c−s)− κs(χ(v, ĉs, c−s), cs)]
}
.

The mechanism is (interim) individually rational (IR) if for all b and vb,

Ev−b,c

[
ub(χ(v, c),vb)− tβb (v, c)

]
≥ 0,

and for all s and cs,

Ev,c−s
[tσs (v, c)− κs(χ(v, c), cs)] ≥ 0.

For the purposes of Theorem 5, we impose the additional assumption that revenue equiv-

alence holds.20 That is, we assume that if the mechanism (χ, tβ, tσ) is BIC, then the expected

payoff for each player is determined by χ up to an additive constant. As shown in Krishna and

Maenner (2001), this condition holds if for each b, the set of types Vb is convex and ub(xb, ·)

is a convex function, and for each s, the set of types Cs is convex and −κs(xs, ·) is a convex

function. As they argue, this condition is satisfied in all standard auction design problems

(Krishna and Maenner, 2001, p.1115).

Theorem 5 If buyers and sellers are component complements and revenue equivalence holds,

then there is no ex post efficient BIC-IR mechanism that runs a budget surplus in expectation.

Buyers and sellers are strict component complements, then every ex post efficient BIC-IR

mechanism runs a budget deficit in expectation.

Proof : Let m = (χ, tβ, tσ) be a mechanism satisfying incentive compatibility and individual

rationality such that the allocation rule χ is ex post efficient. Let m∗ be the VCG mechanism

based on allocation rule χ. The incentive compatibility of m and m∗ and the assumption of

revenue equivalence imply that m has the same payment rule as m∗ up to a constant. Consider

a buyer of type vb and a seller s of type cs. By the definition of a VCG mechanism, for

mechanism m∗, payments from and to such types of agents are 0, and so are their payoffs

because W ∗
−b,. = W ∗ and W ∗

.,−s = W ∗ for any b and s that do not trade. By the individual

rationality of m, the expected payments from and to these agents under mechanism m must

20A first instance of revenue equivalence was noticed by Vickrey (1961, 1962). Myerson (1981) and Riley
and Samuelson (1981) provide general formulations and formalization. The revenue equivalence theorem we are
invoking here is due to Krishna and Maenner (2001); see also Krishna (2002). Proofs of impossibility results using
revenue equivalence were developed by Williams (1999) and independently by Krishna and Perry (2000), based
on arguments first developed Makowski and Mezzetti (1994). For an alternative approach and generalization,
see Makowski and Ostroy (1989) and the extension by Segal and Whinston (2012).
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be nonnegative. Thus, tβ is equal to the VCG payment rule plus a nonnegative constant and

tσ is equal to the VCG payment rule plus a nonnegative constant. It follows that m generates

weakly less revenue than R(v, c) when the types are (v, c). Thus, to prove the theorem, it is

sufficient to show that R(v, c) ≤ 0 for all (v, c) and that R(v, c) < 0 whenever (CC) holds

strictly, which follows from Theorem 1. �

43



References

Arrow, K. (1959): “Toward a Theory of Price Adjustment,” in The Allocation of Economic

Resources: Essays in Honor of Bernard Francis Haley, ed. by M. Abramovitz, pp. 41–51.

Stanford University Press, Stanford.

Ausubel, L. (1999): “A Generalized Vickrey Auction,” Mimeo, University of Maryland.

Ausubel, L. (2006): “An Efficient Dynamic Auction for Heterogeneous Commodities,” Amer-

ican Economic Review, 96(3), 602–629.

Bikhchandani, S., and J. M. Ostroy (2002): “The Package Assignment Model.,” Journal

of Economic Theory, 107(2), 377–406.

Chambers, C., and F. Echenique (2015): “The Core Matchings of Markets with Transfers,”

American Economic Journal: Microeconomics, 7(1), 144–164.

Choo, E. (forthcoming): “Dynamic Marriage Matching: An Empirical Framework,” Econo-

metrica.

Clarke, E. (1971): “Multipart Pricing of Public Goods,” Public Choice, 11(1), 17–33.

Dantzig, G. B. (1963): Linear Programming and Extensions. Princeton University.

Echenique, F., S. Lee, M. Shum, and M. B. Yenmez (2013): “The Revealed Preference

Theory of Stable and Extremal Stable Matchings,” Econometrica, 81(1), 153–71.

Green, J., and J.-J. Laffont (1977): “Characterization of Satisfactory Mechanisms for the

Revelation of Preferences for Public Goods,” Econometrica, 45(2), 427–438.

Gresik, T., and M. Satterthwaite (1989): “The Rate at which a Simple Market Converges

to Efficiency as the Number of Traders Increases: An Asymptotic Result for Optimal Trading

Mechanisms,” Journal of Economic Theory, 48(1), 304–332.

Groves, T. (1973): “Incentives in Teams,” Econometrica, 41(4), 617–631.

Groves, T., and M. Loeb (1975): “Incentives and Public Inputs,” Journal of Public Eco-

nomics, 4, 211–226.

Hatfield, J., N. Immorlica, and S. Kominers (2012): “Testing Substitutability,” Games

and Economic Behaviour, 75(2), 639–645.

44



Hatfield, J., S. Kominers, A. Nichifor, M. Ostrovsky, and A. Westkamp (2015):

“Full Substitutability,” Working Paper.

Hatfield, J., and P. Milgrom (2005): “Matching with Contracts,” American Economic

Review, 95(4), 913–935.

Holmström, B. (1979): “Groves’ Scheme on Restricted Domains,” Econometrica, 47(5),

1137–1144.

Hurwicz, L. (1973): “The Design of Mechanisms for Resource Allocation,” American Eco-

nomic Review, 63(2), 1–30.

Jackson, M., H. Sonnenschein, and Y. Xing (2015): “The Efficiency of Bargaining with

Many Items,” Working Paper.

Kelso, A., and V. Crawford (1982): “Job Matching, Coalition Formation, and Gross

Substitutes,” Econometrica, 50(6), 1483–1504.

Koopmans, T. C., and M. Beckmann (1957): “Assignment Problems and the Location of

Economic Activities,” Econometrica, 25(1), 53–76.

Krishna, V. (2002): Auction Theory. Elsevier Science, Academic Press.

Krishna, V., and E. Maenner (2001): “Convex Potentials with an Application to Mecha-

nism Design,” Econometrica, 69(4), 1113–1119.

Krishna, V., and M. Perry (2000): “Efficient Mechanism Design,” Working Paper, Penn

State University.

Kuhn, H. W. (1955): “The Hungarian Method for the Assignment Problem,” Naval Research

Logistics Quarterly, 2, 83–97.

Loertscher, S., L. M. Marx, and T. Wilkening (2015): “A Long Way Coming: Design-

ing Centralized Markets with Privately Informed Buyers and Sellers,” Journal of Economic

Literature, 53(4), 857–897.

Loertscher, S., and C. Mezzetti (2015): “Double-Clock Auctions and Two-Sided VCG

with Endogenous Reserve Prices,” Working Paper, University of Melbourne.

45



Makowski, L., and C. Mezzetti (1994): “Bayesian and Weakly Robust First Best Mecha-

nisms: Characterizations,” Journal of Economic Theory, 64(2), 500–519.

Makowski, L., and J. M. Ostroy (1987): “Vickrey-Clarke-Groves Mechanisms and Perfect

Competition,” Journal of Economic Theory, 42(2), 244–261.

Makowski, L., and J. M. Ostroy (1989): “Efficient and Individually Rational Bayesian

Mechanisms Only Exist on Perfectly Competitive Environments,” UCLA Dept. of Economics

Working Paper #566.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995): Microeconomic Theory. New

York: Oxford University Press.

McAfee, R. P. (1992): “A Dominant Strategy Double Auction,” Journal of Economic Theory,

56(2), 434–450.

Milgrom, P. (2004): Putting Auction Theory to Work. Cambridge University Press.

Myerson, R., and M. Satterthwaite (1983): “Efficient Mechanisms for Bilateral Trading,”

Journal of Economic Theory, 29(2), 265–281.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematical Operations Research, 6(1),

58–73.

Riley, J. G., and W. F. Samuelson (1981): “Optimal Auctions,” American Economic

Review, 71(3), 381–392.

Satterthwaite, M., S. Williams, and K. Zachariadis (2015): “Price Discovery Using a

Double-Auction,” SSRN Working Paper.

Satterthwaite, M. A., S. R. Williams, and K. E. Zachariadis (forthcoming): “Op-

timality Versus Practicality in Market Design: A Comparison of Two Double Auctions,”

Games and Economic Behaviour.

Segal, I., and M. Whinston (2014): “Property Rights and the Efficiency of Bargaining,”

Working Paper.

Segal, I., and M. D. Whinston (2011): “A Simple Status Quo That Ensures Participation

(with Application to Efficient Bargaining),” Theoretical Economics, 6(1), 109–125.

46



(2012): “Property Rights,” in Handbook of Organizational Economics, ed. by R. Gib-

bons, and J. Roberts, pp. 100–159. Princeton University Press.

Shapley, L. (1962): “Complements and Substitutes in the Optimal Assignment Problem,”

Naval Research Logistics Quarterly, 9, 45–48.

Shapley, L., and M. Shubik (1972): “The Assignment Game I: The Core,” International

Journal of Game Theory, 1(1), 111–130.

Vickrey, W. (1961): “Counterspeculation, Auction, and Competitive Sealed Tenders,” Jour-

nal of Finance, 16, 8–37.

(1962): “Auctions and Bidding Games,” in Recent Advances in Game Theory, vol.

29, Princeton Conference Series, pp. 15–27. Princeton University Press, Princeton, NJ.

Williams, S. R. (1999): “A Characterization of Efficient, Bayesian Incentive Compatible

Mechanisms,” Economic Theory, 14, 155–180.

47


